Evaluate
a
Differentiate w.r.t. a
1
Share
Copied to clipboard
\frac{\left(1+\frac{1}{a}\right)\left(a-1+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
Divide \frac{1+\frac{1}{a}}{a^{2}+\frac{1}{a}} by \frac{\frac{1}{a^{2}}}{a-1+\frac{1}{a}} by multiplying \frac{1+\frac{1}{a}}{a^{2}+\frac{1}{a}} by the reciprocal of \frac{\frac{1}{a^{2}}}{a-1+\frac{1}{a}}.
\frac{\left(\frac{a}{a}+\frac{1}{a}\right)\left(a-1+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{\frac{a+1}{a}\left(a-1+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
Since \frac{a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\frac{a+1}{a}\left(\frac{\left(a-1\right)a}{a}+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-1 times \frac{a}{a}.
\frac{\frac{a+1}{a}\times \frac{\left(a-1\right)a+1}{a}}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
Since \frac{\left(a-1\right)a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\frac{a+1}{a}\times \frac{a^{2}-a+1}{a}}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
Do the multiplications in \left(a-1\right)a+1.
\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
Multiply \frac{a+1}{a} times \frac{a^{2}-a+1}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\left(\frac{a^{2}a}{a}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{a}{a}.
\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\frac{a^{2}a+1}{a}\times \frac{1}{a^{2}}}
Since \frac{a^{2}a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\frac{a^{3}+1}{a}\times \frac{1}{a^{2}}}
Do the multiplications in a^{2}a+1.
\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\frac{a^{3}+1}{aa^{2}}}
Multiply \frac{a^{3}+1}{a} times \frac{1}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+1\right)\left(a^{2}-a+1\right)aa^{2}}{aa\left(a^{3}+1\right)}
Divide \frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa} by \frac{a^{3}+1}{aa^{2}} by multiplying \frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa} by the reciprocal of \frac{a^{3}+1}{aa^{2}}.
\frac{a\left(a+1\right)\left(a^{2}-a+1\right)}{a^{3}+1}
Cancel out aa in both numerator and denominator.
\frac{a\left(a+1\right)\left(a^{2}-a+1\right)}{\left(a+1\right)\left(a^{2}-a+1\right)}
Factor the expressions that are not already factored.
a
Cancel out \left(a+1\right)\left(a^{2}-a+1\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(1+\frac{1}{a}\right)\left(a-1+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
Divide \frac{1+\frac{1}{a}}{a^{2}+\frac{1}{a}} by \frac{\frac{1}{a^{2}}}{a-1+\frac{1}{a}} by multiplying \frac{1+\frac{1}{a}}{a^{2}+\frac{1}{a}} by the reciprocal of \frac{\frac{1}{a^{2}}}{a-1+\frac{1}{a}}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(\frac{a}{a}+\frac{1}{a}\right)\left(a-1+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a+1}{a}\left(a-1+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
Since \frac{a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a+1}{a}\left(\frac{\left(a-1\right)a}{a}+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
To add or subtract expressions, expand them to make their denominators the same. Multiply a-1 times \frac{a}{a}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a+1}{a}\times \frac{\left(a-1\right)a+1}{a}}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
Since \frac{\left(a-1\right)a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a+1}{a}\times \frac{a^{2}-a+1}{a}}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
Do the multiplications in \left(a-1\right)a+1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
Multiply \frac{a+1}{a} times \frac{a^{2}-a+1}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\left(\frac{a^{2}a}{a}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{a}{a}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\frac{a^{2}a+1}{a}\times \frac{1}{a^{2}}})
Since \frac{a^{2}a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\frac{a^{3}+1}{a}\times \frac{1}{a^{2}}})
Do the multiplications in a^{2}a+1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\frac{a^{3}+1}{aa^{2}}})
Multiply \frac{a^{3}+1}{a} times \frac{1}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a+1\right)\left(a^{2}-a+1\right)aa^{2}}{aa\left(a^{3}+1\right)})
Divide \frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa} by \frac{a^{3}+1}{aa^{2}} by multiplying \frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa} by the reciprocal of \frac{a^{3}+1}{aa^{2}}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a+1\right)\left(a^{2}-a+1\right)}{a^{3}+1})
Cancel out aa in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a+1\right)\left(a^{2}-a+1\right)}{\left(a+1\right)\left(a^{2}-a+1\right)})
Factor the expressions that are not already factored in \frac{a\left(a+1\right)\left(a^{2}-a+1\right)}{a^{3}+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Cancel out \left(a+1\right)\left(a^{2}-a+1\right) in both numerator and denominator.
a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
a^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}