Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+\frac{1}{a}\right)\left(a-1+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
Divide \frac{1+\frac{1}{a}}{a^{2}+\frac{1}{a}} by \frac{\frac{1}{a^{2}}}{a-1+\frac{1}{a}} by multiplying \frac{1+\frac{1}{a}}{a^{2}+\frac{1}{a}} by the reciprocal of \frac{\frac{1}{a^{2}}}{a-1+\frac{1}{a}}.
\frac{\left(\frac{a}{a}+\frac{1}{a}\right)\left(a-1+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{\frac{a+1}{a}\left(a-1+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
Since \frac{a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\frac{a+1}{a}\left(\frac{\left(a-1\right)a}{a}+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-1 times \frac{a}{a}.
\frac{\frac{a+1}{a}\times \frac{\left(a-1\right)a+1}{a}}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
Since \frac{\left(a-1\right)a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\frac{a+1}{a}\times \frac{a^{2}-a+1}{a}}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
Do the multiplications in \left(a-1\right)a+1.
\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
Multiply \frac{a+1}{a} times \frac{a^{2}-a+1}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\left(\frac{a^{2}a}{a}+\frac{1}{a}\right)\times \frac{1}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{a}{a}.
\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\frac{a^{2}a+1}{a}\times \frac{1}{a^{2}}}
Since \frac{a^{2}a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\frac{a^{3}+1}{a}\times \frac{1}{a^{2}}}
Do the multiplications in a^{2}a+1.
\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\frac{a^{3}+1}{aa^{2}}}
Multiply \frac{a^{3}+1}{a} times \frac{1}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+1\right)\left(a^{2}-a+1\right)aa^{2}}{aa\left(a^{3}+1\right)}
Divide \frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa} by \frac{a^{3}+1}{aa^{2}} by multiplying \frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa} by the reciprocal of \frac{a^{3}+1}{aa^{2}}.
\frac{a\left(a+1\right)\left(a^{2}-a+1\right)}{a^{3}+1}
Cancel out aa in both numerator and denominator.
\frac{a\left(a+1\right)\left(a^{2}-a+1\right)}{\left(a+1\right)\left(a^{2}-a+1\right)}
Factor the expressions that are not already factored.
a
Cancel out \left(a+1\right)\left(a^{2}-a+1\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(1+\frac{1}{a}\right)\left(a-1+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
Divide \frac{1+\frac{1}{a}}{a^{2}+\frac{1}{a}} by \frac{\frac{1}{a^{2}}}{a-1+\frac{1}{a}} by multiplying \frac{1+\frac{1}{a}}{a^{2}+\frac{1}{a}} by the reciprocal of \frac{\frac{1}{a^{2}}}{a-1+\frac{1}{a}}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(\frac{a}{a}+\frac{1}{a}\right)\left(a-1+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a+1}{a}\left(a-1+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
Since \frac{a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a+1}{a}\left(\frac{\left(a-1\right)a}{a}+\frac{1}{a}\right)}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
To add or subtract expressions, expand them to make their denominators the same. Multiply a-1 times \frac{a}{a}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a+1}{a}\times \frac{\left(a-1\right)a+1}{a}}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
Since \frac{\left(a-1\right)a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a+1}{a}\times \frac{a^{2}-a+1}{a}}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
Do the multiplications in \left(a-1\right)a+1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\left(a^{2}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
Multiply \frac{a+1}{a} times \frac{a^{2}-a+1}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\left(\frac{a^{2}a}{a}+\frac{1}{a}\right)\times \frac{1}{a^{2}}})
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{a}{a}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\frac{a^{2}a+1}{a}\times \frac{1}{a^{2}}})
Since \frac{a^{2}a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\frac{a^{3}+1}{a}\times \frac{1}{a^{2}}})
Do the multiplications in a^{2}a+1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa}}{\frac{a^{3}+1}{aa^{2}}})
Multiply \frac{a^{3}+1}{a} times \frac{1}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a+1\right)\left(a^{2}-a+1\right)aa^{2}}{aa\left(a^{3}+1\right)})
Divide \frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa} by \frac{a^{3}+1}{aa^{2}} by multiplying \frac{\left(a+1\right)\left(a^{2}-a+1\right)}{aa} by the reciprocal of \frac{a^{3}+1}{aa^{2}}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a+1\right)\left(a^{2}-a+1\right)}{a^{3}+1})
Cancel out aa in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a+1\right)\left(a^{2}-a+1\right)}{\left(a+1\right)\left(a^{2}-a+1\right)})
Factor the expressions that are not already factored in \frac{a\left(a+1\right)\left(a^{2}-a+1\right)}{a^{3}+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Cancel out \left(a+1\right)\left(a^{2}-a+1\right) in both numerator and denominator.
a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
a^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.