Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{-x}{x+1}+\frac{2x}{\left(x-1\right)\left(-x-1\right)}\right)\times \frac{-3x^{2}+5x-2}{x}
Factor 1-x^{2}.
\left(\frac{\left(-x\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{-2x}{\left(x-1\right)\left(x+1\right)}\right)\times \frac{-3x^{2}+5x-2}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-1\right)\left(-x-1\right) is \left(x-1\right)\left(x+1\right). Multiply \frac{-x}{x+1} times \frac{x-1}{x-1}. Multiply \frac{2x}{\left(x-1\right)\left(-x-1\right)} times \frac{-1}{-1}.
\frac{\left(-x\right)\left(x-1\right)-2x}{\left(x-1\right)\left(x+1\right)}\times \frac{-3x^{2}+5x-2}{x}
Since \frac{\left(-x\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{-2x}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+x-2x}{\left(x-1\right)\left(x+1\right)}\times \frac{-3x^{2}+5x-2}{x}
Do the multiplications in \left(-x\right)\left(x-1\right)-2x.
\frac{-x^{2}-x}{\left(x-1\right)\left(x+1\right)}\times \frac{-3x^{2}+5x-2}{x}
Combine like terms in -x^{2}+x-2x.
\frac{x\left(-x-1\right)}{\left(x-1\right)\left(x+1\right)}\times \frac{-3x^{2}+5x-2}{x}
Factor the expressions that are not already factored in \frac{-x^{2}-x}{\left(x-1\right)\left(x+1\right)}.
\frac{-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\times \frac{-3x^{2}+5x-2}{x}
Extract the negative sign in -1-x.
\frac{-x}{x-1}\times \frac{-3x^{2}+5x-2}{x}
Cancel out x+1 in both numerator and denominator.
\frac{-x\left(-3x^{2}+5x-2\right)}{\left(x-1\right)x}
Multiply \frac{-x}{x-1} times \frac{-3x^{2}+5x-2}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-3x^{2}+5x-2\right)}{x-1}
Cancel out x in both numerator and denominator.
\frac{-\left(3x-2\right)\left(-x+1\right)}{x-1}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(x-1\right)\left(3x-2\right)}{x-1}
Extract the negative sign in 1-x.
-\left(-1\right)\left(3x-2\right)
Cancel out x-1 in both numerator and denominator.
3x-2
Expand the expression.
\left(\frac{-x}{x+1}+\frac{2x}{\left(x-1\right)\left(-x-1\right)}\right)\times \frac{-3x^{2}+5x-2}{x}
Factor 1-x^{2}.
\left(\frac{\left(-x\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{-2x}{\left(x-1\right)\left(x+1\right)}\right)\times \frac{-3x^{2}+5x-2}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-1\right)\left(-x-1\right) is \left(x-1\right)\left(x+1\right). Multiply \frac{-x}{x+1} times \frac{x-1}{x-1}. Multiply \frac{2x}{\left(x-1\right)\left(-x-1\right)} times \frac{-1}{-1}.
\frac{\left(-x\right)\left(x-1\right)-2x}{\left(x-1\right)\left(x+1\right)}\times \frac{-3x^{2}+5x-2}{x}
Since \frac{\left(-x\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{-2x}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+x-2x}{\left(x-1\right)\left(x+1\right)}\times \frac{-3x^{2}+5x-2}{x}
Do the multiplications in \left(-x\right)\left(x-1\right)-2x.
\frac{-x^{2}-x}{\left(x-1\right)\left(x+1\right)}\times \frac{-3x^{2}+5x-2}{x}
Combine like terms in -x^{2}+x-2x.
\frac{x\left(-x-1\right)}{\left(x-1\right)\left(x+1\right)}\times \frac{-3x^{2}+5x-2}{x}
Factor the expressions that are not already factored in \frac{-x^{2}-x}{\left(x-1\right)\left(x+1\right)}.
\frac{-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\times \frac{-3x^{2}+5x-2}{x}
Extract the negative sign in -1-x.
\frac{-x}{x-1}\times \frac{-3x^{2}+5x-2}{x}
Cancel out x+1 in both numerator and denominator.
\frac{-x\left(-3x^{2}+5x-2\right)}{\left(x-1\right)x}
Multiply \frac{-x}{x-1} times \frac{-3x^{2}+5x-2}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-3x^{2}+5x-2\right)}{x-1}
Cancel out x in both numerator and denominator.
\frac{-\left(3x-2\right)\left(-x+1\right)}{x-1}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(x-1\right)\left(3x-2\right)}{x-1}
Extract the negative sign in 1-x.
-\left(-1\right)\left(3x-2\right)
Cancel out x-1 in both numerator and denominator.
3x-2
Expand the expression.