Evaluate
\frac{1-m^{2}}{4}
Expand
\frac{1-m^{2}}{4}
Quiz
Polynomial
5 problems similar to:
( \frac { - m - 1 } { 2 } ) ^ { 2 } + \frac { m ( - m - 1 ) } { 2 }
Share
Copied to clipboard
\frac{\left(-m-1\right)^{2}}{2^{2}}+\frac{m\left(-m-1\right)}{2}
To raise \frac{-m-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-m-1\right)^{2}}{2^{2}}+\frac{m\left(-m\right)-m}{2}
Use the distributive property to multiply m by -m-1.
\frac{\left(-m-1\right)^{2}}{4}+\frac{2\left(m\left(-m\right)-m\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2^{2} and 2 is 4. Multiply \frac{m\left(-m\right)-m}{2} times \frac{2}{2}.
\frac{\left(-m-1\right)^{2}+2\left(m\left(-m\right)-m\right)}{4}
Since \frac{\left(-m-1\right)^{2}}{4} and \frac{2\left(m\left(-m\right)-m\right)}{4} have the same denominator, add them by adding their numerators.
\frac{\left(-m-1\right)^{2}}{4}+\frac{m^{2}\left(-1\right)-m}{2}
Multiply m and m to get m^{2}.
\frac{\left(-m-1\right)^{2}}{4}+\frac{2\left(m^{2}\left(-1\right)-m\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{m^{2}\left(-1\right)-m}{2} times \frac{2}{2}.
\frac{\left(-m-1\right)^{2}+2\left(m^{2}\left(-1\right)-m\right)}{4}
Since \frac{\left(-m-1\right)^{2}}{4} and \frac{2\left(m^{2}\left(-1\right)-m\right)}{4} have the same denominator, add them by adding their numerators.
\frac{m^{2}+2m+1-2m^{2}-2m}{4}
Do the multiplications in \left(-m-1\right)^{2}+2\left(m^{2}\left(-1\right)-m\right).
\frac{-m^{2}+1}{4}
Combine like terms in m^{2}+2m+1-2m^{2}-2m.
\frac{\left(-m-1\right)^{2}}{2^{2}}+\frac{m\left(-m-1\right)}{2}
To raise \frac{-m-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-m-1\right)^{2}}{2^{2}}+\frac{m\left(-m\right)-m}{2}
Use the distributive property to multiply m by -m-1.
\frac{\left(-m-1\right)^{2}}{4}+\frac{2\left(m\left(-m\right)-m\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2^{2} and 2 is 4. Multiply \frac{m\left(-m\right)-m}{2} times \frac{2}{2}.
\frac{\left(-m-1\right)^{2}+2\left(m\left(-m\right)-m\right)}{4}
Since \frac{\left(-m-1\right)^{2}}{4} and \frac{2\left(m\left(-m\right)-m\right)}{4} have the same denominator, add them by adding their numerators.
\frac{\left(-m-1\right)^{2}}{4}+\frac{m^{2}\left(-1\right)-m}{2}
Multiply m and m to get m^{2}.
\frac{\left(-m-1\right)^{2}}{4}+\frac{2\left(m^{2}\left(-1\right)-m\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{m^{2}\left(-1\right)-m}{2} times \frac{2}{2}.
\frac{\left(-m-1\right)^{2}+2\left(m^{2}\left(-1\right)-m\right)}{4}
Since \frac{\left(-m-1\right)^{2}}{4} and \frac{2\left(m^{2}\left(-1\right)-m\right)}{4} have the same denominator, add them by adding their numerators.
\frac{m^{2}+2m+1-2m^{2}-2m}{4}
Do the multiplications in \left(-m-1\right)^{2}+2\left(m^{2}\left(-1\right)-m\right).
\frac{-m^{2}+1}{4}
Combine like terms in m^{2}+2m+1-2m^{2}-2m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}