Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{-3}{a+1}-\frac{a\left(a+1\right)}{a+1}+1\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Divide a+1 by a+1 to get 1.
\left(\frac{-3}{a+1}-a+1\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Cancel out a+1 in both numerator and denominator.
\left(\frac{-3}{a+1}+\frac{\left(-a+1\right)\left(a+1\right)}{a+1}\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
To add or subtract expressions, expand them to make their denominators the same. Multiply -a+1 times \frac{a+1}{a+1}.
\frac{-3+\left(-a+1\right)\left(a+1\right)}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Since \frac{-3}{a+1} and \frac{\left(-a+1\right)\left(a+1\right)}{a+1} have the same denominator, add them by adding their numerators.
\frac{-3-a^{2}-a+a+1}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Do the multiplications in -3+\left(-a+1\right)\left(a+1\right).
\frac{-2-a^{2}}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Combine like terms in -3-a^{2}-a+a+1.
\frac{\left(-2-a^{2}\right)\left(a+1\right)}{\left(a+1\right)\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Multiply \frac{-2-a^{2}}{a+1} times \frac{a+1}{\left(a-2\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-a^{2}-2}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Cancel out a+1 in both numerator and denominator.
\frac{-a^{2}-2}{\left(a-2\right)^{2}}+\frac{4\left(a-2\right)}{\left(a-2\right)^{2}}-a
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)^{2} and a-2 is \left(a-2\right)^{2}. Multiply \frac{4}{a-2} times \frac{a-2}{a-2}.
\frac{-a^{2}-2+4\left(a-2\right)}{\left(a-2\right)^{2}}-a
Since \frac{-a^{2}-2}{\left(a-2\right)^{2}} and \frac{4\left(a-2\right)}{\left(a-2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-a^{2}-2+4a-8}{\left(a-2\right)^{2}}-a
Do the multiplications in -a^{2}-2+4\left(a-2\right).
\frac{-a^{2}-10+4a}{\left(a-2\right)^{2}}-a
Combine like terms in -a^{2}-2+4a-8.
\frac{-a^{2}-10+4a}{\left(a-2\right)^{2}}-\frac{a\left(a-2\right)^{2}}{\left(a-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{\left(a-2\right)^{2}}{\left(a-2\right)^{2}}.
\frac{-a^{2}-10+4a-a\left(a-2\right)^{2}}{\left(a-2\right)^{2}}
Since \frac{-a^{2}-10+4a}{\left(a-2\right)^{2}} and \frac{a\left(a-2\right)^{2}}{\left(a-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-a^{2}-10+4a-a^{3}+4a^{2}-4a}{\left(a-2\right)^{2}}
Do the multiplications in -a^{2}-10+4a-a\left(a-2\right)^{2}.
\frac{3a^{2}-10-a^{3}}{\left(a-2\right)^{2}}
Combine like terms in -a^{2}-10+4a-a^{3}+4a^{2}-4a.
\frac{3a^{2}-10-a^{3}}{a^{2}-4a+4}
Expand \left(a-2\right)^{2}.
\left(\frac{-3}{a+1}-\frac{a\left(a+1\right)}{a+1}+1\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Divide a+1 by a+1 to get 1.
\left(\frac{-3}{a+1}-a+1\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Cancel out a+1 in both numerator and denominator.
\left(\frac{-3}{a+1}+\frac{\left(-a+1\right)\left(a+1\right)}{a+1}\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
To add or subtract expressions, expand them to make their denominators the same. Multiply -a+1 times \frac{a+1}{a+1}.
\frac{-3+\left(-a+1\right)\left(a+1\right)}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Since \frac{-3}{a+1} and \frac{\left(-a+1\right)\left(a+1\right)}{a+1} have the same denominator, add them by adding their numerators.
\frac{-3-a^{2}-a+a+1}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Do the multiplications in -3+\left(-a+1\right)\left(a+1\right).
\frac{-2-a^{2}}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Combine like terms in -3-a^{2}-a+a+1.
\frac{\left(-2-a^{2}\right)\left(a+1\right)}{\left(a+1\right)\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Multiply \frac{-2-a^{2}}{a+1} times \frac{a+1}{\left(a-2\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-a^{2}-2}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Cancel out a+1 in both numerator and denominator.
\frac{-a^{2}-2}{\left(a-2\right)^{2}}+\frac{4\left(a-2\right)}{\left(a-2\right)^{2}}-a
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)^{2} and a-2 is \left(a-2\right)^{2}. Multiply \frac{4}{a-2} times \frac{a-2}{a-2}.
\frac{-a^{2}-2+4\left(a-2\right)}{\left(a-2\right)^{2}}-a
Since \frac{-a^{2}-2}{\left(a-2\right)^{2}} and \frac{4\left(a-2\right)}{\left(a-2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-a^{2}-2+4a-8}{\left(a-2\right)^{2}}-a
Do the multiplications in -a^{2}-2+4\left(a-2\right).
\frac{-a^{2}-10+4a}{\left(a-2\right)^{2}}-a
Combine like terms in -a^{2}-2+4a-8.
\frac{-a^{2}-10+4a}{\left(a-2\right)^{2}}-\frac{a\left(a-2\right)^{2}}{\left(a-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{\left(a-2\right)^{2}}{\left(a-2\right)^{2}}.
\frac{-a^{2}-10+4a-a\left(a-2\right)^{2}}{\left(a-2\right)^{2}}
Since \frac{-a^{2}-10+4a}{\left(a-2\right)^{2}} and \frac{a\left(a-2\right)^{2}}{\left(a-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-a^{2}-10+4a-a^{3}+4a^{2}-4a}{\left(a-2\right)^{2}}
Do the multiplications in -a^{2}-10+4a-a\left(a-2\right)^{2}.
\frac{3a^{2}-10-a^{3}}{\left(a-2\right)^{2}}
Combine like terms in -a^{2}-10+4a-a^{3}+4a^{2}-4a.
\frac{3a^{2}-10-a^{3}}{a^{2}-4a+4}
Expand \left(a-2\right)^{2}.