Evaluate
\frac{495}{256}=1.93359375
Factor
\frac{3 ^ {2} \cdot 5 \cdot 11}{2 ^ {8}} = 1\frac{239}{256} = 1.93359375
Share
Copied to clipboard
\left(-\frac{3}{4}\right)^{3}+\left(\frac{-5}{8}\right)^{3}+\left(\frac{11}{8}\right)^{3}
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
-\frac{27}{64}+\left(\frac{-5}{8}\right)^{3}+\left(\frac{11}{8}\right)^{3}
Calculate -\frac{3}{4} to the power of 3 and get -\frac{27}{64}.
-\frac{27}{64}+\left(-\frac{5}{8}\right)^{3}+\left(\frac{11}{8}\right)^{3}
Fraction \frac{-5}{8} can be rewritten as -\frac{5}{8} by extracting the negative sign.
-\frac{27}{64}-\frac{125}{512}+\left(\frac{11}{8}\right)^{3}
Calculate -\frac{5}{8} to the power of 3 and get -\frac{125}{512}.
-\frac{341}{512}+\left(\frac{11}{8}\right)^{3}
Subtract \frac{125}{512} from -\frac{27}{64} to get -\frac{341}{512}.
-\frac{341}{512}+\frac{1331}{512}
Calculate \frac{11}{8} to the power of 3 and get \frac{1331}{512}.
\frac{495}{256}
Add -\frac{341}{512} and \frac{1331}{512} to get \frac{495}{256}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}