Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{-12\sqrt{3}+9}{13}+\frac{13\left(-2\right)\sqrt{3}}{13}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{3} times \frac{13}{13}.
\left(\frac{-12\sqrt{3}+9+13\left(-2\right)\sqrt{3}}{13}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}
Since \frac{-12\sqrt{3}+9}{13} and \frac{13\left(-2\right)\sqrt{3}}{13} have the same denominator, add them by adding their numerators.
\left(\frac{-12\sqrt{3}+9-26\sqrt{3}}{13}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}
Do the multiplications in -12\sqrt{3}+9+13\left(-2\right)\sqrt{3}.
\left(\frac{-38\sqrt{3}+9}{13}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}
Do the calculations in -12\sqrt{3}+9-26\sqrt{3}.
\frac{\left(-38\sqrt{3}+9\right)^{2}}{13^{2}}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}
To raise \frac{-38\sqrt{3}+9}{13} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-38\sqrt{3}+9\right)^{2}}{13^{2}}+\frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
To raise \frac{3+9\sqrt{3}}{13} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-38\sqrt{3}+9\right)^{2}+\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Since \frac{\left(-38\sqrt{3}+9\right)^{2}}{13^{2}} and \frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}} have the same denominator, add them by adding their numerators.
\frac{1444\left(\sqrt{3}\right)^{2}-684\sqrt{3}+81}{13^{2}}+\frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-38\sqrt{3}+9\right)^{2}.
\frac{1444\times 3-684\sqrt{3}+81}{13^{2}}+\frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
The square of \sqrt{3} is 3.
\frac{4332-684\sqrt{3}+81}{13^{2}}+\frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Multiply 1444 and 3 to get 4332.
\frac{4413-684\sqrt{3}}{13^{2}}+\frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Add 4332 and 81 to get 4413.
\frac{4413-684\sqrt{3}}{169}+\frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Calculate 13 to the power of 2 and get 169.
\frac{4413-684\sqrt{3}}{169}+\frac{9+54\sqrt{3}+81\left(\sqrt{3}\right)^{2}}{13^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+9\sqrt{3}\right)^{2}.
\frac{4413-684\sqrt{3}}{169}+\frac{9+54\sqrt{3}+81\times 3}{13^{2}}
The square of \sqrt{3} is 3.
\frac{4413-684\sqrt{3}}{169}+\frac{9+54\sqrt{3}+243}{13^{2}}
Multiply 81 and 3 to get 243.
\frac{4413-684\sqrt{3}}{169}+\frac{252+54\sqrt{3}}{13^{2}}
Add 9 and 243 to get 252.
\frac{4413-684\sqrt{3}}{169}+\frac{252+54\sqrt{3}}{169}
Calculate 13 to the power of 2 and get 169.
\frac{4413-684\sqrt{3}+252+54\sqrt{3}}{169}
Since \frac{4413-684\sqrt{3}}{169} and \frac{252+54\sqrt{3}}{169} have the same denominator, add them by adding their numerators.
\frac{4665-630\sqrt{3}}{169}
Do the calculations in 4413-684\sqrt{3}+252+54\sqrt{3}.
\left(\frac{-12\sqrt{3}+9}{13}+\frac{13\left(-2\right)\sqrt{3}}{13}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{3} times \frac{13}{13}.
\left(\frac{-12\sqrt{3}+9+13\left(-2\right)\sqrt{3}}{13}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}
Since \frac{-12\sqrt{3}+9}{13} and \frac{13\left(-2\right)\sqrt{3}}{13} have the same denominator, add them by adding their numerators.
\left(\frac{-12\sqrt{3}+9-26\sqrt{3}}{13}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}
Do the multiplications in -12\sqrt{3}+9+13\left(-2\right)\sqrt{3}.
\left(\frac{-38\sqrt{3}+9}{13}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}
Do the calculations in -12\sqrt{3}+9-26\sqrt{3}.
\frac{\left(-38\sqrt{3}+9\right)^{2}}{13^{2}}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}
To raise \frac{-38\sqrt{3}+9}{13} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-38\sqrt{3}+9\right)^{2}}{13^{2}}+\frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
To raise \frac{3+9\sqrt{3}}{13} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-38\sqrt{3}+9\right)^{2}+\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Since \frac{\left(-38\sqrt{3}+9\right)^{2}}{13^{2}} and \frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}} have the same denominator, add them by adding their numerators.
\frac{1444\left(\sqrt{3}\right)^{2}-684\sqrt{3}+81}{13^{2}}+\frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-38\sqrt{3}+9\right)^{2}.
\frac{1444\times 3-684\sqrt{3}+81}{13^{2}}+\frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
The square of \sqrt{3} is 3.
\frac{4332-684\sqrt{3}+81}{13^{2}}+\frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Multiply 1444 and 3 to get 4332.
\frac{4413-684\sqrt{3}}{13^{2}}+\frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Add 4332 and 81 to get 4413.
\frac{4413-684\sqrt{3}}{169}+\frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Calculate 13 to the power of 2 and get 169.
\frac{4413-684\sqrt{3}}{169}+\frac{9+54\sqrt{3}+81\left(\sqrt{3}\right)^{2}}{13^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+9\sqrt{3}\right)^{2}.
\frac{4413-684\sqrt{3}}{169}+\frac{9+54\sqrt{3}+81\times 3}{13^{2}}
The square of \sqrt{3} is 3.
\frac{4413-684\sqrt{3}}{169}+\frac{9+54\sqrt{3}+243}{13^{2}}
Multiply 81 and 3 to get 243.
\frac{4413-684\sqrt{3}}{169}+\frac{252+54\sqrt{3}}{13^{2}}
Add 9 and 243 to get 252.
\frac{4413-684\sqrt{3}}{169}+\frac{252+54\sqrt{3}}{169}
Calculate 13 to the power of 2 and get 169.
\frac{4413-684\sqrt{3}+252+54\sqrt{3}}{169}
Since \frac{4413-684\sqrt{3}}{169} and \frac{252+54\sqrt{3}}{169} have the same denominator, add them by adding their numerators.
\frac{4665-630\sqrt{3}}{169}
Do the calculations in 4413-684\sqrt{3}+252+54\sqrt{3}.