Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{-1}{3}\right)^{3}x^{2}\times \frac{2}{3}
Multiply x and x to get x^{2}.
\left(-\frac{1}{3}\right)^{3}x^{2}\times \frac{2}{3}
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
-\frac{1}{27}x^{2}\times \frac{2}{3}
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
-\frac{2}{81}x^{2}
Multiply -\frac{1}{27} and \frac{2}{3} to get -\frac{2}{81}.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{-1}{3}\right)^{3}x^{2}\times \frac{2}{3})
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{1}{3}\right)^{3}x^{2}\times \frac{2}{3})
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{1}{27}x^{2}\times \frac{2}{3})
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{2}{81}x^{2})
Multiply -\frac{1}{27} and \frac{2}{3} to get -\frac{2}{81}.
2\left(-\frac{2}{81}\right)x^{2-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{4}{81}x^{2-1}
Multiply 2 times -\frac{2}{81}.
-\frac{4}{81}x^{1}
Subtract 1 from 2.
-\frac{4}{81}x
For any term t, t^{1}=t.