Verify
false
Share
Copied to clipboard
\frac{\left(-1+\sqrt{3}\right)^{3}}{2^{3}}+\left(\frac{-1-\sqrt{3}}{2}\right)^{3}=2
To raise \frac{-1+\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-1+\sqrt{3}\right)^{3}}{2^{3}}+\frac{\left(-1-\sqrt{3}\right)^{3}}{2^{3}}=2
To raise \frac{-1-\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-1+\sqrt{3}\right)^{3}+\left(-1-\sqrt{3}\right)^{3}}{2^{3}}=2
Since \frac{\left(-1+\sqrt{3}\right)^{3}}{2^{3}} and \frac{\left(-1-\sqrt{3}\right)^{3}}{2^{3}} have the same denominator, add them by adding their numerators.
\frac{-1+3\sqrt{3}-3\left(\sqrt{3}\right)^{2}+\left(\sqrt{3}\right)^{3}+\left(-1-\sqrt{3}\right)^{3}}{2^{3}}=2
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(-1+\sqrt{3}\right)^{3}.
\frac{-1+3\sqrt{3}-3\times 3+\left(\sqrt{3}\right)^{3}+\left(-1-\sqrt{3}\right)^{3}}{2^{3}}=2
The square of \sqrt{3} is 3.
\frac{-1+3\sqrt{3}-9+\left(\sqrt{3}\right)^{3}+\left(-1-\sqrt{3}\right)^{3}}{2^{3}}=2
Multiply -3 and 3 to get -9.
\frac{-10+3\sqrt{3}+\left(\sqrt{3}\right)^{3}+\left(-1-\sqrt{3}\right)^{3}}{2^{3}}=2
Subtract 9 from -1 to get -10.
\frac{-10+3\sqrt{3}+\left(\sqrt{3}\right)^{3}-1-3\sqrt{3}-3\left(\sqrt{3}\right)^{2}-\left(\sqrt{3}\right)^{3}}{2^{3}}=2
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(-1-\sqrt{3}\right)^{3}.
\frac{-10+3\sqrt{3}+\left(\sqrt{3}\right)^{3}-1-3\sqrt{3}-3\times 3-\left(\sqrt{3}\right)^{3}}{2^{3}}=2
The square of \sqrt{3} is 3.
\frac{-10+3\sqrt{3}+\left(\sqrt{3}\right)^{3}-1-3\sqrt{3}-9-\left(\sqrt{3}\right)^{3}}{2^{3}}=2
Multiply -3 and 3 to get -9.
\frac{-10+3\sqrt{3}+\left(\sqrt{3}\right)^{3}-10-3\sqrt{3}-\left(\sqrt{3}\right)^{3}}{2^{3}}=2
Subtract 9 from -1 to get -10.
\frac{-20+3\sqrt{3}+\left(\sqrt{3}\right)^{3}-3\sqrt{3}-\left(\sqrt{3}\right)^{3}}{2^{3}}=2
Subtract 10 from -10 to get -20.
\frac{-20+\left(\sqrt{3}\right)^{3}-\left(\sqrt{3}\right)^{3}}{2^{3}}=2
Combine 3\sqrt{3} and -3\sqrt{3} to get 0.
\frac{-20}{2^{3}}=2
Combine \left(\sqrt{3}\right)^{3} and -\left(\sqrt{3}\right)^{3} to get 0.
\frac{-20}{8}=2
Calculate 2 to the power of 3 and get 8.
-\frac{5}{2}=2
Reduce the fraction \frac{-20}{8} to lowest terms by extracting and canceling out 4.
-\frac{5}{2}=\frac{4}{2}
Convert 2 to fraction \frac{4}{2}.
\text{false}
Compare -\frac{5}{2} and \frac{4}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}