Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-1+\sqrt{3}\right)^{3}}{2^{3}}+\left(\frac{-1-\sqrt{3}}{2}\right)^{3}=2
To raise \frac{-1+\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-1+\sqrt{3}\right)^{3}}{2^{3}}+\frac{\left(-1-\sqrt{3}\right)^{3}}{2^{3}}=2
To raise \frac{-1-\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-1+\sqrt{3}\right)^{3}+\left(-1-\sqrt{3}\right)^{3}}{2^{3}}=2
Since \frac{\left(-1+\sqrt{3}\right)^{3}}{2^{3}} and \frac{\left(-1-\sqrt{3}\right)^{3}}{2^{3}} have the same denominator, add them by adding their numerators.
\frac{-1+3\sqrt{3}-3\left(\sqrt{3}\right)^{2}+\left(\sqrt{3}\right)^{3}+\left(-1-\sqrt{3}\right)^{3}}{2^{3}}=2
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(-1+\sqrt{3}\right)^{3}.
\frac{-1+3\sqrt{3}-3\times 3+\left(\sqrt{3}\right)^{3}+\left(-1-\sqrt{3}\right)^{3}}{2^{3}}=2
The square of \sqrt{3} is 3.
\frac{-1+3\sqrt{3}-9+\left(\sqrt{3}\right)^{3}+\left(-1-\sqrt{3}\right)^{3}}{2^{3}}=2
Multiply -3 and 3 to get -9.
\frac{-10+3\sqrt{3}+\left(\sqrt{3}\right)^{3}+\left(-1-\sqrt{3}\right)^{3}}{2^{3}}=2
Subtract 9 from -1 to get -10.
\frac{-10+3\sqrt{3}+\left(\sqrt{3}\right)^{3}-1-3\sqrt{3}-3\left(\sqrt{3}\right)^{2}-\left(\sqrt{3}\right)^{3}}{2^{3}}=2
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(-1-\sqrt{3}\right)^{3}.
\frac{-10+3\sqrt{3}+\left(\sqrt{3}\right)^{3}-1-3\sqrt{3}-3\times 3-\left(\sqrt{3}\right)^{3}}{2^{3}}=2
The square of \sqrt{3} is 3.
\frac{-10+3\sqrt{3}+\left(\sqrt{3}\right)^{3}-1-3\sqrt{3}-9-\left(\sqrt{3}\right)^{3}}{2^{3}}=2
Multiply -3 and 3 to get -9.
\frac{-10+3\sqrt{3}+\left(\sqrt{3}\right)^{3}-10-3\sqrt{3}-\left(\sqrt{3}\right)^{3}}{2^{3}}=2
Subtract 9 from -1 to get -10.
\frac{-20+3\sqrt{3}+\left(\sqrt{3}\right)^{3}-3\sqrt{3}-\left(\sqrt{3}\right)^{3}}{2^{3}}=2
Subtract 10 from -10 to get -20.
\frac{-20+\left(\sqrt{3}\right)^{3}-\left(\sqrt{3}\right)^{3}}{2^{3}}=2
Combine 3\sqrt{3} and -3\sqrt{3} to get 0.
\frac{-20}{2^{3}}=2
Combine \left(\sqrt{3}\right)^{3} and -\left(\sqrt{3}\right)^{3} to get 0.
\frac{-20}{8}=2
Calculate 2 to the power of 3 and get 8.
-\frac{5}{2}=2
Reduce the fraction \frac{-20}{8} to lowest terms by extracting and canceling out 4.
-\frac{5}{2}=\frac{4}{2}
Convert 2 to fraction \frac{4}{2}.
\text{false}
Compare -\frac{5}{2} and \frac{4}{2}.