Evaluate
\frac{73}{9}\approx 8.111111111
Factor
\frac{73}{3 ^ {2}} = 8\frac{1}{9} = 8.11111111111111
Share
Copied to clipboard
\frac{\left(-1+\sqrt{145}\right)^{2}}{6^{2}}+\left(\frac{-1-\sqrt{145}}{6}\right)^{2}
To raise \frac{-1+\sqrt{145}}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-1+\sqrt{145}\right)^{2}}{6^{2}}+\frac{\left(-1-\sqrt{145}\right)^{2}}{6^{2}}
To raise \frac{-1-\sqrt{145}}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-1+\sqrt{145}\right)^{2}+\left(-1-\sqrt{145}\right)^{2}}{6^{2}}
Since \frac{\left(-1+\sqrt{145}\right)^{2}}{6^{2}} and \frac{\left(-1-\sqrt{145}\right)^{2}}{6^{2}} have the same denominator, add them by adding their numerators.
\frac{1-2\sqrt{145}+\left(\sqrt{145}\right)^{2}}{6^{2}}+\frac{\left(-1-\sqrt{145}\right)^{2}}{6^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-1+\sqrt{145}\right)^{2}.
\frac{1-2\sqrt{145}+145}{6^{2}}+\frac{\left(-1-\sqrt{145}\right)^{2}}{6^{2}}
The square of \sqrt{145} is 145.
\frac{146-2\sqrt{145}}{6^{2}}+\frac{\left(-1-\sqrt{145}\right)^{2}}{6^{2}}
Add 1 and 145 to get 146.
\frac{146-2\sqrt{145}}{36}+\frac{\left(-1-\sqrt{145}\right)^{2}}{6^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{146-2\sqrt{145}}{36}+\frac{1+2\sqrt{145}+\left(\sqrt{145}\right)^{2}}{6^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-1-\sqrt{145}\right)^{2}.
\frac{146-2\sqrt{145}}{36}+\frac{1+2\sqrt{145}+145}{6^{2}}
The square of \sqrt{145} is 145.
\frac{146-2\sqrt{145}}{36}+\frac{146+2\sqrt{145}}{6^{2}}
Add 1 and 145 to get 146.
\frac{146-2\sqrt{145}}{36}+\frac{146+2\sqrt{145}}{36}
Calculate 6 to the power of 2 and get 36.
\frac{146-2\sqrt{145}+146+2\sqrt{145}}{36}
Since \frac{146-2\sqrt{145}}{36} and \frac{146+2\sqrt{145}}{36} have the same denominator, add them by adding their numerators.
\frac{292}{36}
Do the calculations in 146-2\sqrt{145}+146+2\sqrt{145}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}