Evaluate
-\frac{29}{73}+\frac{53}{73}i\approx -0.397260274+0.726027397i
Real Part
-\frac{29}{73} = -0.3972602739726027
Share
Copied to clipboard
\frac{-1+7i}{8-3i}
Divide 14 by 2 to get 7.
\frac{\left(-1+7i\right)\left(8+3i\right)}{\left(8-3i\right)\left(8+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8+3i.
\frac{\left(-1+7i\right)\left(8+3i\right)}{8^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-1+7i\right)\left(8+3i\right)}{73}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-8-3i+7i\times 8+7\times 3i^{2}}{73}
Multiply complex numbers -1+7i and 8+3i like you multiply binomials.
\frac{-8-3i+7i\times 8+7\times 3\left(-1\right)}{73}
By definition, i^{2} is -1.
\frac{-8-3i+56i-21}{73}
Do the multiplications in -8-3i+7i\times 8+7\times 3\left(-1\right).
\frac{-8-21+\left(-3+56\right)i}{73}
Combine the real and imaginary parts in -8-3i+56i-21.
\frac{-29+53i}{73}
Do the additions in -8-21+\left(-3+56\right)i.
-\frac{29}{73}+\frac{53}{73}i
Divide -29+53i by 73 to get -\frac{29}{73}+\frac{53}{73}i.
Re(\frac{-1+7i}{8-3i})
Divide 14 by 2 to get 7.
Re(\frac{\left(-1+7i\right)\left(8+3i\right)}{\left(8-3i\right)\left(8+3i\right)})
Multiply both numerator and denominator of \frac{-1+7i}{8-3i} by the complex conjugate of the denominator, 8+3i.
Re(\frac{\left(-1+7i\right)\left(8+3i\right)}{8^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-1+7i\right)\left(8+3i\right)}{73})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-8-3i+7i\times 8+7\times 3i^{2}}{73})
Multiply complex numbers -1+7i and 8+3i like you multiply binomials.
Re(\frac{-8-3i+7i\times 8+7\times 3\left(-1\right)}{73})
By definition, i^{2} is -1.
Re(\frac{-8-3i+56i-21}{73})
Do the multiplications in -8-3i+7i\times 8+7\times 3\left(-1\right).
Re(\frac{-8-21+\left(-3+56\right)i}{73})
Combine the real and imaginary parts in -8-3i+56i-21.
Re(\frac{-29+53i}{73})
Do the additions in -8-21+\left(-3+56\right)i.
Re(-\frac{29}{73}+\frac{53}{73}i)
Divide -29+53i by 73 to get -\frac{29}{73}+\frac{53}{73}i.
-\frac{29}{73}
The real part of -\frac{29}{73}+\frac{53}{73}i is -\frac{29}{73}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}