Evaluate
\frac{\sqrt{21}-1}{2}\approx 1.791287847
Expand
\frac{\sqrt{21} - 1}{2} = 1.79128784747792
Share
Copied to clipboard
\frac{\left(-\sqrt{21}-1\right)^{2}}{2^{2}}-6
To raise \frac{-\sqrt{21}-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-\sqrt{21}-1\right)^{2}}{2^{2}}-\frac{6\times 2^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{2^{2}}{2^{2}}.
\frac{\left(-\sqrt{21}-1\right)^{2}-6\times 2^{2}}{2^{2}}
Since \frac{\left(-\sqrt{21}-1\right)^{2}}{2^{2}} and \frac{6\times 2^{2}}{2^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-\sqrt{21}\right)^{2}-2\left(-\sqrt{21}\right)+1}{2^{2}}-6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-\sqrt{21}-1\right)^{2}.
\frac{\left(\sqrt{21}\right)^{2}-2\left(-\sqrt{21}\right)+1}{2^{2}}-6
Calculate -\sqrt{21} to the power of 2 and get \left(\sqrt{21}\right)^{2}.
\frac{\left(\sqrt{21}\right)^{2}+2\sqrt{21}+1}{2^{2}}-6
Multiply -2 and -1 to get 2.
\frac{\left(\sqrt{21}\right)^{2}+2\sqrt{21}+1}{4}-6
Calculate 2 to the power of 2 and get 4.
\frac{21+2\sqrt{21}+1}{4}-6
The square of \sqrt{21} is 21.
\frac{22+2\sqrt{21}}{4}-6
Add 21 and 1 to get 22.
\frac{22+2\sqrt{21}}{4}-\frac{6\times 4}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{4}{4}.
\frac{22+2\sqrt{21}-6\times 4}{4}
Since \frac{22+2\sqrt{21}}{4} and \frac{6\times 4}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{22+2\sqrt{21}-24}{4}
Do the multiplications in 22+2\sqrt{21}-6\times 4.
\frac{-2+2\sqrt{21}}{4}
Do the calculations in 22+2\sqrt{21}-24.
\frac{\left(-\sqrt{21}-1\right)^{2}}{2^{2}}-6
To raise \frac{-\sqrt{21}-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-\sqrt{21}-1\right)^{2}}{2^{2}}-\frac{6\times 2^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{2^{2}}{2^{2}}.
\frac{\left(-\sqrt{21}-1\right)^{2}-6\times 2^{2}}{2^{2}}
Since \frac{\left(-\sqrt{21}-1\right)^{2}}{2^{2}} and \frac{6\times 2^{2}}{2^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-\sqrt{21}\right)^{2}-2\left(-\sqrt{21}\right)+1}{2^{2}}-6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-\sqrt{21}-1\right)^{2}.
\frac{\left(\sqrt{21}\right)^{2}-2\left(-\sqrt{21}\right)+1}{2^{2}}-6
Calculate -\sqrt{21} to the power of 2 and get \left(\sqrt{21}\right)^{2}.
\frac{\left(\sqrt{21}\right)^{2}+2\sqrt{21}+1}{2^{2}}-6
Multiply -2 and -1 to get 2.
\frac{\left(\sqrt{21}\right)^{2}+2\sqrt{21}+1}{4}-6
Calculate 2 to the power of 2 and get 4.
\frac{21+2\sqrt{21}+1}{4}-6
The square of \sqrt{21} is 21.
\frac{22+2\sqrt{21}}{4}-6
Add 21 and 1 to get 22.
\frac{22+2\sqrt{21}}{4}-\frac{6\times 4}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{4}{4}.
\frac{22+2\sqrt{21}-6\times 4}{4}
Since \frac{22+2\sqrt{21}}{4} and \frac{6\times 4}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{22+2\sqrt{21}-24}{4}
Do the multiplications in 22+2\sqrt{21}-6\times 4.
\frac{-2+2\sqrt{21}}{4}
Do the calculations in 22+2\sqrt{21}-24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}