Evaluate
\frac{3}{5}=0.6
Factor
\frac{3}{5} = 0.6
Share
Copied to clipboard
\frac{-\frac{5}{30}-\frac{14}{30}}{-\frac{95}{20}}+\frac{7}{15}
Least common multiple of 6 and 15 is 30. Convert -\frac{1}{6} and \frac{7}{15} to fractions with denominator 30.
\frac{\frac{-5-14}{30}}{-\frac{95}{20}}+\frac{7}{15}
Since -\frac{5}{30} and \frac{14}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{19}{30}}{-\frac{95}{20}}+\frac{7}{15}
Subtract 14 from -5 to get -19.
\frac{-\frac{19}{30}}{-\frac{19}{4}}+\frac{7}{15}
Reduce the fraction \frac{95}{20} to lowest terms by extracting and canceling out 5.
-\frac{19}{30}\left(-\frac{4}{19}\right)+\frac{7}{15}
Divide -\frac{19}{30} by -\frac{19}{4} by multiplying -\frac{19}{30} by the reciprocal of -\frac{19}{4}.
\frac{-19\left(-4\right)}{30\times 19}+\frac{7}{15}
Multiply -\frac{19}{30} times -\frac{4}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{76}{570}+\frac{7}{15}
Do the multiplications in the fraction \frac{-19\left(-4\right)}{30\times 19}.
\frac{2}{15}+\frac{7}{15}
Reduce the fraction \frac{76}{570} to lowest terms by extracting and canceling out 38.
\frac{2+7}{15}
Since \frac{2}{15} and \frac{7}{15} have the same denominator, add them by adding their numerators.
\frac{9}{15}
Add 2 and 7 to get 9.
\frac{3}{5}
Reduce the fraction \frac{9}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}