Solve for a
a = \frac{2 \sqrt{55} + 13}{3} \approx 9.277465658
a=\frac{13-2\sqrt{55}}{3}\approx -0.610798991
Share
Copied to clipboard
\frac{\left(a-1\right)^{2}}{2^{2}}=a^{2}-7a-4
To raise \frac{a-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{2}-2a+1}{2^{2}}=a^{2}-7a-4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
\frac{a^{2}-2a+1}{4}=a^{2}-7a-4
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}=a^{2}-7a-4
Divide each term of a^{2}-2a+1 by 4 to get \frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}.
\frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}-a^{2}=-7a-4
Subtract a^{2} from both sides.
-\frac{3}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}=-7a-4
Combine \frac{1}{4}a^{2} and -a^{2} to get -\frac{3}{4}a^{2}.
-\frac{3}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}+7a=-4
Add 7a to both sides.
-\frac{3}{4}a^{2}+\frac{13}{2}a+\frac{1}{4}=-4
Combine -\frac{1}{2}a and 7a to get \frac{13}{2}a.
-\frac{3}{4}a^{2}+\frac{13}{2}a+\frac{1}{4}+4=0
Add 4 to both sides.
-\frac{3}{4}a^{2}+\frac{13}{2}a+\frac{17}{4}=0
Add \frac{1}{4} and 4 to get \frac{17}{4}.
a=\frac{-\frac{13}{2}±\sqrt{\left(\frac{13}{2}\right)^{2}-4\left(-\frac{3}{4}\right)\times \frac{17}{4}}}{2\left(-\frac{3}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{4} for a, \frac{13}{2} for b, and \frac{17}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}-4\left(-\frac{3}{4}\right)\times \frac{17}{4}}}{2\left(-\frac{3}{4}\right)}
Square \frac{13}{2} by squaring both the numerator and the denominator of the fraction.
a=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}+3\times \frac{17}{4}}}{2\left(-\frac{3}{4}\right)}
Multiply -4 times -\frac{3}{4}.
a=\frac{-\frac{13}{2}±\sqrt{\frac{169+51}{4}}}{2\left(-\frac{3}{4}\right)}
Multiply 3 times \frac{17}{4}.
a=\frac{-\frac{13}{2}±\sqrt{55}}{2\left(-\frac{3}{4}\right)}
Add \frac{169}{4} to \frac{51}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
a=\frac{-\frac{13}{2}±\sqrt{55}}{-\frac{3}{2}}
Multiply 2 times -\frac{3}{4}.
a=\frac{\sqrt{55}-\frac{13}{2}}{-\frac{3}{2}}
Now solve the equation a=\frac{-\frac{13}{2}±\sqrt{55}}{-\frac{3}{2}} when ± is plus. Add -\frac{13}{2} to \sqrt{55}.
a=\frac{13-2\sqrt{55}}{3}
Divide -\frac{13}{2}+\sqrt{55} by -\frac{3}{2} by multiplying -\frac{13}{2}+\sqrt{55} by the reciprocal of -\frac{3}{2}.
a=\frac{-\sqrt{55}-\frac{13}{2}}{-\frac{3}{2}}
Now solve the equation a=\frac{-\frac{13}{2}±\sqrt{55}}{-\frac{3}{2}} when ± is minus. Subtract \sqrt{55} from -\frac{13}{2}.
a=\frac{2\sqrt{55}+13}{3}
Divide -\frac{13}{2}-\sqrt{55} by -\frac{3}{2} by multiplying -\frac{13}{2}-\sqrt{55} by the reciprocal of -\frac{3}{2}.
a=\frac{13-2\sqrt{55}}{3} a=\frac{2\sqrt{55}+13}{3}
The equation is now solved.
\frac{\left(a-1\right)^{2}}{2^{2}}=a^{2}-7a-4
To raise \frac{a-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{2}-2a+1}{2^{2}}=a^{2}-7a-4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
\frac{a^{2}-2a+1}{4}=a^{2}-7a-4
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}=a^{2}-7a-4
Divide each term of a^{2}-2a+1 by 4 to get \frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}.
\frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}-a^{2}=-7a-4
Subtract a^{2} from both sides.
-\frac{3}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}=-7a-4
Combine \frac{1}{4}a^{2} and -a^{2} to get -\frac{3}{4}a^{2}.
-\frac{3}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}+7a=-4
Add 7a to both sides.
-\frac{3}{4}a^{2}+\frac{13}{2}a+\frac{1}{4}=-4
Combine -\frac{1}{2}a and 7a to get \frac{13}{2}a.
-\frac{3}{4}a^{2}+\frac{13}{2}a=-4-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
-\frac{3}{4}a^{2}+\frac{13}{2}a=-\frac{17}{4}
Subtract \frac{1}{4} from -4 to get -\frac{17}{4}.
\frac{-\frac{3}{4}a^{2}+\frac{13}{2}a}{-\frac{3}{4}}=-\frac{\frac{17}{4}}{-\frac{3}{4}}
Divide both sides of the equation by -\frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
a^{2}+\frac{\frac{13}{2}}{-\frac{3}{4}}a=-\frac{\frac{17}{4}}{-\frac{3}{4}}
Dividing by -\frac{3}{4} undoes the multiplication by -\frac{3}{4}.
a^{2}-\frac{26}{3}a=-\frac{\frac{17}{4}}{-\frac{3}{4}}
Divide \frac{13}{2} by -\frac{3}{4} by multiplying \frac{13}{2} by the reciprocal of -\frac{3}{4}.
a^{2}-\frac{26}{3}a=\frac{17}{3}
Divide -\frac{17}{4} by -\frac{3}{4} by multiplying -\frac{17}{4} by the reciprocal of -\frac{3}{4}.
a^{2}-\frac{26}{3}a+\left(-\frac{13}{3}\right)^{2}=\frac{17}{3}+\left(-\frac{13}{3}\right)^{2}
Divide -\frac{26}{3}, the coefficient of the x term, by 2 to get -\frac{13}{3}. Then add the square of -\frac{13}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{26}{3}a+\frac{169}{9}=\frac{17}{3}+\frac{169}{9}
Square -\frac{13}{3} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{26}{3}a+\frac{169}{9}=\frac{220}{9}
Add \frac{17}{3} to \frac{169}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{13}{3}\right)^{2}=\frac{220}{9}
Factor a^{2}-\frac{26}{3}a+\frac{169}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{13}{3}\right)^{2}}=\sqrt{\frac{220}{9}}
Take the square root of both sides of the equation.
a-\frac{13}{3}=\frac{2\sqrt{55}}{3} a-\frac{13}{3}=-\frac{2\sqrt{55}}{3}
Simplify.
a=\frac{2\sqrt{55}+13}{3} a=\frac{13-2\sqrt{55}}{3}
Add \frac{13}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}