Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(4x\right)^{2}y^{0}}{-3x^{-1}y^{2}}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 0 to get 0.
\left(\frac{\left(4x\right)^{2}}{-3\times \frac{1}{x}y^{2}}\right)^{3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{4^{2}x^{2}}{-3\times \frac{1}{x}y^{2}}\right)^{3}
Expand \left(4x\right)^{2}.
\left(\frac{16x^{2}}{-3\times \frac{1}{x}y^{2}}\right)^{3}
Calculate 4 to the power of 2 and get 16.
\left(\frac{16x^{2}}{\frac{-3}{x}y^{2}}\right)^{3}
Express -3\times \frac{1}{x} as a single fraction.
\left(\frac{16x^{2}}{\frac{-3y^{2}}{x}}\right)^{3}
Express \frac{-3}{x}y^{2} as a single fraction.
\left(\frac{16x^{2}x}{-3y^{2}}\right)^{3}
Divide 16x^{2} by \frac{-3y^{2}}{x} by multiplying 16x^{2} by the reciprocal of \frac{-3y^{2}}{x}.
\left(\frac{-16x^{2}x}{3y^{2}}\right)^{3}
Cancel out -1 in both numerator and denominator.
\left(\frac{-16x^{3}}{3y^{2}}\right)^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\left(-16x^{3}\right)^{3}}{\left(3y^{2}\right)^{3}}
To raise \frac{-16x^{3}}{3y^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-16\right)^{3}\left(x^{3}\right)^{3}}{\left(3y^{2}\right)^{3}}
Expand \left(-16x^{3}\right)^{3}.
\frac{\left(-16\right)^{3}x^{9}}{\left(3y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{-4096x^{9}}{\left(3y^{2}\right)^{3}}
Calculate -16 to the power of 3 and get -4096.
\frac{-4096x^{9}}{3^{3}\left(y^{2}\right)^{3}}
Expand \left(3y^{2}\right)^{3}.
\frac{-4096x^{9}}{3^{3}y^{6}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{-4096x^{9}}{27y^{6}}
Calculate 3 to the power of 3 and get 27.
\left(\frac{\left(4x\right)^{2}y^{0}}{-3x^{-1}y^{2}}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 0 to get 0.
\left(\frac{\left(4x\right)^{2}}{-3\times \frac{1}{x}y^{2}}\right)^{3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{4^{2}x^{2}}{-3\times \frac{1}{x}y^{2}}\right)^{3}
Expand \left(4x\right)^{2}.
\left(\frac{16x^{2}}{-3\times \frac{1}{x}y^{2}}\right)^{3}
Calculate 4 to the power of 2 and get 16.
\left(\frac{16x^{2}}{\frac{-3}{x}y^{2}}\right)^{3}
Express -3\times \frac{1}{x} as a single fraction.
\left(\frac{16x^{2}}{\frac{-3y^{2}}{x}}\right)^{3}
Express \frac{-3}{x}y^{2} as a single fraction.
\left(\frac{16x^{2}x}{-3y^{2}}\right)^{3}
Divide 16x^{2} by \frac{-3y^{2}}{x} by multiplying 16x^{2} by the reciprocal of \frac{-3y^{2}}{x}.
\left(\frac{-16x^{2}x}{3y^{2}}\right)^{3}
Cancel out -1 in both numerator and denominator.
\left(\frac{-16x^{3}}{3y^{2}}\right)^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\left(-16x^{3}\right)^{3}}{\left(3y^{2}\right)^{3}}
To raise \frac{-16x^{3}}{3y^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-16\right)^{3}\left(x^{3}\right)^{3}}{\left(3y^{2}\right)^{3}}
Expand \left(-16x^{3}\right)^{3}.
\frac{\left(-16\right)^{3}x^{9}}{\left(3y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{-4096x^{9}}{\left(3y^{2}\right)^{3}}
Calculate -16 to the power of 3 and get -4096.
\frac{-4096x^{9}}{3^{3}\left(y^{2}\right)^{3}}
Expand \left(3y^{2}\right)^{3}.
\frac{-4096x^{9}}{3^{3}y^{6}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{-4096x^{9}}{27y^{6}}
Calculate 3 to the power of 3 and get 27.