Evaluate
\frac{1}{10}=0.1
Factor
\frac{1}{2 \cdot 5} = 0.1
Share
Copied to clipboard
\frac{\left(4\times \frac{2}{3}\times \frac{1}{3}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \left(\frac{2}{5}\right)^{-1}}
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
\frac{\left(\frac{8}{3}\times \frac{1}{3}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \left(\frac{2}{5}\right)^{-1}}
Multiply 4 and \frac{2}{3} to get \frac{8}{3}.
\frac{\left(\frac{8}{9}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \left(\frac{2}{5}\right)^{-1}}
Multiply \frac{8}{3} and \frac{1}{3} to get \frac{8}{9}.
\frac{\frac{81}{64}}{\left(\frac{9}{4}\right)^{2}\times \left(\frac{2}{5}\right)^{-1}}
Calculate \frac{8}{9} to the power of -2 and get \frac{81}{64}.
\frac{\frac{81}{64}}{\frac{81}{16}\times \left(\frac{2}{5}\right)^{-1}}
Calculate \frac{9}{4} to the power of 2 and get \frac{81}{16}.
\frac{\frac{81}{64}}{\frac{81}{16}\times \frac{5}{2}}
Calculate \frac{2}{5} to the power of -1 and get \frac{5}{2}.
\frac{\frac{81}{64}}{\frac{405}{32}}
Multiply \frac{81}{16} and \frac{5}{2} to get \frac{405}{32}.
\frac{81}{64}\times \frac{32}{405}
Divide \frac{81}{64} by \frac{405}{32} by multiplying \frac{81}{64} by the reciprocal of \frac{405}{32}.
\frac{1}{10}
Multiply \frac{81}{64} and \frac{32}{405} to get \frac{1}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}