Evaluate
\frac{40}{49}\approx 0.816326531
Factor
\frac{2 ^ {3} \cdot 5}{7 ^ {2}} = 0.8163265306122449
Share
Copied to clipboard
\frac{\left(\frac{2\times 9+3}{9\times 3}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \frac{2}{5}}
Express \frac{\frac{2\times 9+3}{9}}{3} as a single fraction.
\frac{\left(\frac{18+3}{9\times 3}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \frac{2}{5}}
Multiply 2 and 9 to get 18.
\frac{\left(\frac{21}{9\times 3}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \frac{2}{5}}
Add 18 and 3 to get 21.
\frac{\left(\frac{21}{27}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \frac{2}{5}}
Multiply 9 and 3 to get 27.
\frac{\left(\frac{7}{9}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \frac{2}{5}}
Reduce the fraction \frac{21}{27} to lowest terms by extracting and canceling out 3.
\frac{\frac{81}{49}}{\left(\frac{9}{4}\right)^{2}\times \frac{2}{5}}
Calculate \frac{7}{9} to the power of -2 and get \frac{81}{49}.
\frac{\frac{81}{49}}{\frac{81}{16}\times \frac{2}{5}}
Calculate \frac{9}{4} to the power of 2 and get \frac{81}{16}.
\frac{\frac{81}{49}}{\frac{81}{40}}
Multiply \frac{81}{16} and \frac{2}{5} to get \frac{81}{40}.
\frac{81}{49}\times \frac{40}{81}
Divide \frac{81}{49} by \frac{81}{40} by multiplying \frac{81}{49} by the reciprocal of \frac{81}{40}.
\frac{40}{49}
Multiply \frac{81}{49} and \frac{40}{81} to get \frac{40}{49}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}