Evaluate
\frac{1}{4096}=0.000244141
Factor
\frac{1}{2 ^ {12}} = 0.000244140625
Share
Copied to clipboard
\left(\frac{2^{-6}}{2^{-3}}\right)^{3}\times \left(2^{-5}\times 2^{4}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\left(\frac{1}{2^{3}}\right)^{3}\times \left(2^{-5}\times 2^{4}\right)^{3}
Rewrite 2^{-3} as 2^{-6}\times 2^{3}. Cancel out 2^{-6} in both numerator and denominator.
\left(\frac{1}{2^{3}}\right)^{3}\times \left(2^{-1}\right)^{3}
To multiply powers of the same base, add their exponents. Add -5 and 4 to get -1.
\left(\frac{1}{2^{3}}\right)^{3}\times 2^{-3}
To raise a power to another power, multiply the exponents. Multiply -1 and 3 to get -3.
\left(\frac{1}{8}\right)^{3}\times 2^{-3}
Calculate 2 to the power of 3 and get 8.
\frac{1}{512}\times 2^{-3}
Calculate \frac{1}{8} to the power of 3 and get \frac{1}{512}.
\frac{1}{512}\times \frac{1}{8}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{1}{4096}
Multiply \frac{1}{512} and \frac{1}{8} to get \frac{1}{4096}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}