Evaluate
\frac{1462725587}{3826410}\approx 382.271002585
Factor
\frac{47 \cdot 31121821}{2 \cdot 3 \cdot 5 \cdot 7 ^ {2} \cdot 19 \cdot 137} = 382\frac{1036967}{3826410} = 382.2710025846681
Share
Copied to clipboard
\frac{\left(-126\right)^{2}}{137}+\frac{\left(41-38\times 3\right)^{2}}{38\times 3}+\frac{\left(48-15\times 3\right)^{2}}{15\times 3}+\frac{\left(40-42\times 7\right)^{2}}{42\times 7}
Subtract 137 from 11 to get -126.
\frac{15876}{137}+\frac{\left(41-38\times 3\right)^{2}}{38\times 3}+\frac{\left(48-15\times 3\right)^{2}}{15\times 3}+\frac{\left(40-42\times 7\right)^{2}}{42\times 7}
Calculate -126 to the power of 2 and get 15876.
\frac{15876}{137}+\frac{\left(41-114\right)^{2}}{38\times 3}+\frac{\left(48-15\times 3\right)^{2}}{15\times 3}+\frac{\left(40-42\times 7\right)^{2}}{42\times 7}
Multiply 38 and 3 to get 114.
\frac{15876}{137}+\frac{\left(-73\right)^{2}}{38\times 3}+\frac{\left(48-15\times 3\right)^{2}}{15\times 3}+\frac{\left(40-42\times 7\right)^{2}}{42\times 7}
Subtract 114 from 41 to get -73.
\frac{15876}{137}+\frac{5329}{38\times 3}+\frac{\left(48-15\times 3\right)^{2}}{15\times 3}+\frac{\left(40-42\times 7\right)^{2}}{42\times 7}
Calculate -73 to the power of 2 and get 5329.
\frac{15876}{137}+\frac{5329}{114}+\frac{\left(48-15\times 3\right)^{2}}{15\times 3}+\frac{\left(40-42\times 7\right)^{2}}{42\times 7}
Multiply 38 and 3 to get 114.
\frac{2539937}{15618}+\frac{\left(48-15\times 3\right)^{2}}{15\times 3}+\frac{\left(40-42\times 7\right)^{2}}{42\times 7}
Add \frac{15876}{137} and \frac{5329}{114} to get \frac{2539937}{15618}.
\frac{2539937}{15618}+\frac{\left(48-45\right)^{2}}{15\times 3}+\frac{\left(40-42\times 7\right)^{2}}{42\times 7}
Multiply 15 and 3 to get 45.
\frac{2539937}{15618}+\frac{3^{2}}{15\times 3}+\frac{\left(40-42\times 7\right)^{2}}{42\times 7}
Subtract 45 from 48 to get 3.
\frac{2539937}{15618}+\frac{9}{15\times 3}+\frac{\left(40-42\times 7\right)^{2}}{42\times 7}
Calculate 3 to the power of 2 and get 9.
\frac{2539937}{15618}+\frac{9}{45}+\frac{\left(40-42\times 7\right)^{2}}{42\times 7}
Multiply 15 and 3 to get 45.
\frac{2539937}{15618}+\frac{1}{5}+\frac{\left(40-42\times 7\right)^{2}}{42\times 7}
Reduce the fraction \frac{9}{45} to lowest terms by extracting and canceling out 9.
\frac{12715303}{78090}+\frac{\left(40-42\times 7\right)^{2}}{42\times 7}
Add \frac{2539937}{15618} and \frac{1}{5} to get \frac{12715303}{78090}.
\frac{12715303}{78090}+\frac{\left(40-294\right)^{2}}{42\times 7}
Multiply 42 and 7 to get 294.
\frac{12715303}{78090}+\frac{\left(-254\right)^{2}}{42\times 7}
Subtract 294 from 40 to get -254.
\frac{12715303}{78090}+\frac{64516}{42\times 7}
Calculate -254 to the power of 2 and get 64516.
\frac{12715303}{78090}+\frac{64516}{294}
Multiply 42 and 7 to get 294.
\frac{12715303}{78090}+\frac{32258}{147}
Reduce the fraction \frac{64516}{294} to lowest terms by extracting and canceling out 2.
\frac{1462725587}{3826410}
Add \frac{12715303}{78090} and \frac{32258}{147} to get \frac{1462725587}{3826410}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}