Evaluate
\frac{5832y^{9}}{x^{27}}
Expand
\frac{5832y^{9}}{x^{27}}
Share
Copied to clipboard
\left(\frac{-6x^{-7}y\left(-9\right)y^{-2}}{3x^{2}y^{-4}}\right)^{3}
To multiply powers of the same base, add their exponents. Add -2 and -5 to get -7.
\left(\frac{-6x^{-7}y^{-1}\left(-9\right)}{3x^{2}y^{-4}}\right)^{3}
To multiply powers of the same base, add their exponents. Add 1 and -2 to get -1.
\left(\frac{-9\left(-2\right)x^{-7}\times \frac{1}{y}}{y^{-4}x^{2}}\right)^{3}
Cancel out 3 in both numerator and denominator.
\left(\frac{-9\left(-2\right)x^{-7}y^{3}}{x^{2}}\right)^{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{-9\left(-2\right)y^{3}}{x^{9}}\right)^{3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{18y^{3}}{x^{9}}\right)^{3}
Multiply -9 and -2 to get 18.
\frac{\left(18y^{3}\right)^{3}}{\left(x^{9}\right)^{3}}
To raise \frac{18y^{3}}{x^{9}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(18y^{3}\right)^{3}}{x^{27}}
To raise a power to another power, multiply the exponents. Multiply 9 and 3 to get 27.
\frac{18^{3}\left(y^{3}\right)^{3}}{x^{27}}
Expand \left(18y^{3}\right)^{3}.
\frac{18^{3}y^{9}}{x^{27}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{5832y^{9}}{x^{27}}
Calculate 18 to the power of 3 and get 5832.
\left(\frac{-6x^{-7}y\left(-9\right)y^{-2}}{3x^{2}y^{-4}}\right)^{3}
To multiply powers of the same base, add their exponents. Add -2 and -5 to get -7.
\left(\frac{-6x^{-7}y^{-1}\left(-9\right)}{3x^{2}y^{-4}}\right)^{3}
To multiply powers of the same base, add their exponents. Add 1 and -2 to get -1.
\left(\frac{-9\left(-2\right)x^{-7}\times \frac{1}{y}}{y^{-4}x^{2}}\right)^{3}
Cancel out 3 in both numerator and denominator.
\left(\frac{-9\left(-2\right)x^{-7}y^{3}}{x^{2}}\right)^{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{-9\left(-2\right)y^{3}}{x^{9}}\right)^{3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{18y^{3}}{x^{9}}\right)^{3}
Multiply -9 and -2 to get 18.
\frac{\left(18y^{3}\right)^{3}}{\left(x^{9}\right)^{3}}
To raise \frac{18y^{3}}{x^{9}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(18y^{3}\right)^{3}}{x^{27}}
To raise a power to another power, multiply the exponents. Multiply 9 and 3 to get 27.
\frac{18^{3}\left(y^{3}\right)^{3}}{x^{27}}
Expand \left(18y^{3}\right)^{3}.
\frac{18^{3}y^{9}}{x^{27}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{5832y^{9}}{x^{27}}
Calculate 18 to the power of 3 and get 5832.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}