Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{-6x^{-7}y\left(-9\right)y^{-2}}{3x^{2}y^{-4}}\right)^{3}
To multiply powers of the same base, add their exponents. Add -2 and -5 to get -7.
\left(\frac{-6x^{-7}y^{-1}\left(-9\right)}{3x^{2}y^{-4}}\right)^{3}
To multiply powers of the same base, add their exponents. Add 1 and -2 to get -1.
\left(\frac{-9\left(-2\right)x^{-7}\times \frac{1}{y}}{y^{-4}x^{2}}\right)^{3}
Cancel out 3 in both numerator and denominator.
\left(\frac{-9\left(-2\right)x^{-7}y^{3}}{x^{2}}\right)^{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{-9\left(-2\right)y^{3}}{x^{9}}\right)^{3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{18y^{3}}{x^{9}}\right)^{3}
Multiply -9 and -2 to get 18.
\frac{\left(18y^{3}\right)^{3}}{\left(x^{9}\right)^{3}}
To raise \frac{18y^{3}}{x^{9}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(18y^{3}\right)^{3}}{x^{27}}
To raise a power to another power, multiply the exponents. Multiply 9 and 3 to get 27.
\frac{18^{3}\left(y^{3}\right)^{3}}{x^{27}}
Expand \left(18y^{3}\right)^{3}.
\frac{18^{3}y^{9}}{x^{27}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{5832y^{9}}{x^{27}}
Calculate 18 to the power of 3 and get 5832.
\left(\frac{-6x^{-7}y\left(-9\right)y^{-2}}{3x^{2}y^{-4}}\right)^{3}
To multiply powers of the same base, add their exponents. Add -2 and -5 to get -7.
\left(\frac{-6x^{-7}y^{-1}\left(-9\right)}{3x^{2}y^{-4}}\right)^{3}
To multiply powers of the same base, add their exponents. Add 1 and -2 to get -1.
\left(\frac{-9\left(-2\right)x^{-7}\times \frac{1}{y}}{y^{-4}x^{2}}\right)^{3}
Cancel out 3 in both numerator and denominator.
\left(\frac{-9\left(-2\right)x^{-7}y^{3}}{x^{2}}\right)^{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{-9\left(-2\right)y^{3}}{x^{9}}\right)^{3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{18y^{3}}{x^{9}}\right)^{3}
Multiply -9 and -2 to get 18.
\frac{\left(18y^{3}\right)^{3}}{\left(x^{9}\right)^{3}}
To raise \frac{18y^{3}}{x^{9}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(18y^{3}\right)^{3}}{x^{27}}
To raise a power to another power, multiply the exponents. Multiply 9 and 3 to get 27.
\frac{18^{3}\left(y^{3}\right)^{3}}{x^{27}}
Expand \left(18y^{3}\right)^{3}.
\frac{18^{3}y^{9}}{x^{27}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{5832y^{9}}{x^{27}}
Calculate 18 to the power of 3 and get 5832.