Evaluate
\frac{25}{161472t^{20}}
Expand
\frac{25}{161472t^{20}}
Share
Copied to clipboard
\left(\frac{\left(\frac{t^{2}}{s^{2}}\right)^{-1}}{\left(\frac{2s^{3}t^{4}}{s^{2}}\right)^{2}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
Cancel out s^{2}t^{3} in both numerator and denominator.
\left(\frac{\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}}}{\left(\frac{2s^{3}t^{4}}{s^{2}}\right)^{2}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
To raise \frac{t^{2}}{s^{2}} to a power, raise both numerator and denominator to the power and then divide.
\left(\frac{\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}}}{\left(2st^{4}\right)^{2}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
Cancel out s^{2} in both numerator and denominator.
\left(\frac{\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}}}{2^{2}s^{2}\left(t^{4}\right)^{2}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
Expand \left(2st^{4}\right)^{2}.
\left(\frac{\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}}}{2^{2}s^{2}t^{8}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\left(\frac{\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}}}{4s^{2}t^{8}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\left(\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}\times 4s^{2}t^{8}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
Express \frac{\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}}}{4s^{2}t^{8}} as a single fraction.
\left(\frac{\left(t^{2}\right)^{-1}}{s^{-2}\times 4s^{2}t^{8}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
\left(\frac{\left(t^{2}\right)^{-1}}{4t^{8}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
Multiply s^{-2} and s^{2} to get 1.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
To raise \frac{\left(t^{2}\right)^{-1}}{4t^{8}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{\left(\frac{12}{25}\right)^{-1}}{\left(25+4\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{\frac{25}{12}}{\left(25+4\right)^{2}}
Calculate \frac{12}{25} to the power of -1 and get \frac{25}{12}.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{\frac{25}{12}}{29^{2}}
Add 25 and 4 to get 29.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{\frac{25}{12}}{841}
Calculate 29 to the power of 2 and get 841.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{25}{12\times 841}
Express \frac{\frac{25}{12}}{841} as a single fraction.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{25}{10092}
Multiply 12 and 841 to get 10092.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}\times 25}{\left(4t^{8}\right)^{2}\times 10092}
Multiply \frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}} times \frac{25}{10092} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(t^{-2}\right)^{2}\times 25}{\left(4t^{8}\right)^{2}\times 10092}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
\frac{t^{-4}\times 25}{\left(4t^{8}\right)^{2}\times 10092}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{t^{-4}\times 25}{4^{2}\left(t^{8}\right)^{2}\times 10092}
Expand \left(4t^{8}\right)^{2}.
\frac{t^{-4}\times 25}{4^{2}t^{16}\times 10092}
To raise a power to another power, multiply the exponents. Multiply 8 and 2 to get 16.
\frac{t^{-4}\times 25}{16t^{16}\times 10092}
Calculate 4 to the power of 2 and get 16.
\frac{t^{-4}\times 25}{161472t^{16}}
Multiply 16 and 10092 to get 161472.
\frac{25}{161472t^{20}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{\left(\frac{t^{2}}{s^{2}}\right)^{-1}}{\left(\frac{2s^{3}t^{4}}{s^{2}}\right)^{2}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
Cancel out s^{2}t^{3} in both numerator and denominator.
\left(\frac{\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}}}{\left(\frac{2s^{3}t^{4}}{s^{2}}\right)^{2}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
To raise \frac{t^{2}}{s^{2}} to a power, raise both numerator and denominator to the power and then divide.
\left(\frac{\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}}}{\left(2st^{4}\right)^{2}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
Cancel out s^{2} in both numerator and denominator.
\left(\frac{\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}}}{2^{2}s^{2}\left(t^{4}\right)^{2}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
Expand \left(2st^{4}\right)^{2}.
\left(\frac{\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}}}{2^{2}s^{2}t^{8}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\left(\frac{\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}}}{4s^{2}t^{8}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\left(\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}\times 4s^{2}t^{8}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
Express \frac{\frac{\left(t^{2}\right)^{-1}}{\left(s^{2}\right)^{-1}}}{4s^{2}t^{8}} as a single fraction.
\left(\frac{\left(t^{2}\right)^{-1}}{s^{-2}\times 4s^{2}t^{8}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
\left(\frac{\left(t^{2}\right)^{-1}}{4t^{8}}\right)^{2}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
Multiply s^{-2} and s^{2} to get 1.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{\left(\frac{12}{5^{2}}\right)^{-1}}{\left(25+4\right)^{2}}
To raise \frac{\left(t^{2}\right)^{-1}}{4t^{8}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{\left(\frac{12}{25}\right)^{-1}}{\left(25+4\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{\frac{25}{12}}{\left(25+4\right)^{2}}
Calculate \frac{12}{25} to the power of -1 and get \frac{25}{12}.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{\frac{25}{12}}{29^{2}}
Add 25 and 4 to get 29.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{\frac{25}{12}}{841}
Calculate 29 to the power of 2 and get 841.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{25}{12\times 841}
Express \frac{\frac{25}{12}}{841} as a single fraction.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}}\times \frac{25}{10092}
Multiply 12 and 841 to get 10092.
\frac{\left(\left(t^{2}\right)^{-1}\right)^{2}\times 25}{\left(4t^{8}\right)^{2}\times 10092}
Multiply \frac{\left(\left(t^{2}\right)^{-1}\right)^{2}}{\left(4t^{8}\right)^{2}} times \frac{25}{10092} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(t^{-2}\right)^{2}\times 25}{\left(4t^{8}\right)^{2}\times 10092}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
\frac{t^{-4}\times 25}{\left(4t^{8}\right)^{2}\times 10092}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{t^{-4}\times 25}{4^{2}\left(t^{8}\right)^{2}\times 10092}
Expand \left(4t^{8}\right)^{2}.
\frac{t^{-4}\times 25}{4^{2}t^{16}\times 10092}
To raise a power to another power, multiply the exponents. Multiply 8 and 2 to get 16.
\frac{t^{-4}\times 25}{16t^{16}\times 10092}
Calculate 4 to the power of 2 and get 16.
\frac{t^{-4}\times 25}{161472t^{16}}
Multiply 16 and 10092 to get 161472.
\frac{25}{161472t^{20}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}