Evaluate
\frac{791015625}{268435456}=2.946762834
Factor
\frac{3 ^ {4} \cdot 5 ^ {10}}{2 ^ {28}} = 2\frac{254144713}{268435456} = 2.9467628337442875
Share
Copied to clipboard
\left(\frac{\left(\frac{3}{5}\right)^{5}\times \left(\frac{3}{4}\right)^{-2}}{\left(\frac{3}{4}\right)^{5}}\right)^{-2}
To multiply powers of the same base, add their exponents. Add -1 and 6 to get 5.
\left(\frac{\left(\frac{3}{5}\right)^{5}}{\left(\frac{3}{4}\right)^{7}}\right)^{-2}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{\frac{243}{3125}}{\left(\frac{3}{4}\right)^{7}}\right)^{-2}
Calculate \frac{3}{5} to the power of 5 and get \frac{243}{3125}.
\left(\frac{\frac{243}{3125}}{\frac{2187}{16384}}\right)^{-2}
Calculate \frac{3}{4} to the power of 7 and get \frac{2187}{16384}.
\left(\frac{243}{3125}\times \frac{16384}{2187}\right)^{-2}
Divide \frac{243}{3125} by \frac{2187}{16384} by multiplying \frac{243}{3125} by the reciprocal of \frac{2187}{16384}.
\left(\frac{16384}{28125}\right)^{-2}
Multiply \frac{243}{3125} and \frac{16384}{2187} to get \frac{16384}{28125}.
\frac{791015625}{268435456}
Calculate \frac{16384}{28125} to the power of -2 and get \frac{791015625}{268435456}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}