Evaluate
\frac{55}{256}=0.21484375
Factor
\frac{5 \cdot 11}{2 ^ {8}} = 0.21484375
Share
Copied to clipboard
\frac{\left(\sqrt{89}\right)^{2}}{4^{2}}-\left(\frac{1\times 16+21}{16}\right)^{2}
To raise \frac{\sqrt{89}}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{89}\right)^{2}}{4^{2}}-\left(\frac{16+21}{16}\right)^{2}
Multiply 1 and 16 to get 16.
\frac{\left(\sqrt{89}\right)^{2}}{4^{2}}-\left(\frac{37}{16}\right)^{2}
Add 16 and 21 to get 37.
\frac{\left(\sqrt{89}\right)^{2}}{4^{2}}-\frac{1369}{256}
Calculate \frac{37}{16} to the power of 2 and get \frac{1369}{256}.
\frac{16\left(\sqrt{89}\right)^{2}}{256}-\frac{1369}{256}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4^{2} and 256 is 256. Multiply \frac{\left(\sqrt{89}\right)^{2}}{4^{2}} times \frac{16}{16}.
\frac{16\left(\sqrt{89}\right)^{2}-1369}{256}
Since \frac{16\left(\sqrt{89}\right)^{2}}{256} and \frac{1369}{256} have the same denominator, subtract them by subtracting their numerators.
\frac{89}{4^{2}}-\frac{1369}{256}
The square of \sqrt{89} is 89.
\frac{89}{16}-\frac{1369}{256}
Calculate 4 to the power of 2 and get 16.
\frac{55}{256}
Subtract \frac{1369}{256} from \frac{89}{16} to get \frac{55}{256}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}