Evaluate
\sqrt{3}\approx 1.732050808
Share
Copied to clipboard
\frac{\frac{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\times \frac{\sqrt{6}-\sqrt{7}}{\sqrt{3}-2}}{\frac{1}{\sqrt{3}}-\frac{\sqrt{3}}{9}+\frac{1}{\sqrt{27}}}
Rationalize the denominator of \frac{\sqrt{7}+\sqrt{6}}{\sqrt{3}+2} by multiplying numerator and denominator by \sqrt{3}-2.
\frac{\frac{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}\right)^{2}-2^{2}}\times \frac{\sqrt{6}-\sqrt{7}}{\sqrt{3}-2}}{\frac{1}{\sqrt{3}}-\frac{\sqrt{3}}{9}+\frac{1}{\sqrt{27}}}
Consider \left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)}{3-4}\times \frac{\sqrt{6}-\sqrt{7}}{\sqrt{3}-2}}{\frac{1}{\sqrt{3}}-\frac{\sqrt{3}}{9}+\frac{1}{\sqrt{27}}}
Square \sqrt{3}. Square 2.
\frac{\frac{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)}{-1}\times \frac{\sqrt{6}-\sqrt{7}}{\sqrt{3}-2}}{\frac{1}{\sqrt{3}}-\frac{\sqrt{3}}{9}+\frac{1}{\sqrt{27}}}
Subtract 4 from 3 to get -1.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\times \frac{\sqrt{6}-\sqrt{7}}{\sqrt{3}-2}}{\frac{1}{\sqrt{3}}-\frac{\sqrt{3}}{9}+\frac{1}{\sqrt{27}}}
Anything divided by -1 gives its opposite.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\times \frac{\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}}{\frac{1}{\sqrt{3}}-\frac{\sqrt{3}}{9}+\frac{1}{\sqrt{27}}}
Rationalize the denominator of \frac{\sqrt{6}-\sqrt{7}}{\sqrt{3}-2} by multiplying numerator and denominator by \sqrt{3}+2.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\times \frac{\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}\right)^{2}-2^{2}}}{\frac{1}{\sqrt{3}}-\frac{\sqrt{3}}{9}+\frac{1}{\sqrt{27}}}
Consider \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\times \frac{\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)}{3-4}}{\frac{1}{\sqrt{3}}-\frac{\sqrt{3}}{9}+\frac{1}{\sqrt{27}}}
Square \sqrt{3}. Square 2.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\times \frac{\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)}{-1}}{\frac{1}{\sqrt{3}}-\frac{\sqrt{3}}{9}+\frac{1}{\sqrt{27}}}
Subtract 4 from 3 to get -1.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)}{\frac{1}{\sqrt{3}}-\frac{\sqrt{3}}{9}+\frac{1}{\sqrt{27}}}
Anything divided by -1 gives its opposite.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)}{\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{3}}{9}+\frac{1}{\sqrt{27}}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)}{\frac{\sqrt{3}}{3}-\frac{\sqrt{3}}{9}+\frac{1}{\sqrt{27}}}
The square of \sqrt{3} is 3.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)}{\frac{2}{9}\sqrt{3}+\frac{1}{\sqrt{27}}}
Combine \frac{\sqrt{3}}{3} and -\frac{\sqrt{3}}{9} to get \frac{2}{9}\sqrt{3}.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)}{\frac{2}{9}\sqrt{3}+\frac{1}{3\sqrt{3}}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)}{\frac{2}{9}\sqrt{3}+\frac{\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{1}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)}{\frac{2}{9}\sqrt{3}+\frac{\sqrt{3}}{3\times 3}}
The square of \sqrt{3} is 3.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)}{\frac{2}{9}\sqrt{3}+\frac{\sqrt{3}}{9}}
Multiply 3 and 3 to get 9.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)}{\frac{1}{3}\sqrt{3}}
Combine \frac{2}{9}\sqrt{3} and \frac{\sqrt{3}}{9} to get \frac{1}{3}\sqrt{3}.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)\sqrt{3}}{\frac{1}{3}\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)}{\frac{1}{3}\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)\sqrt{3}}{\frac{1}{3}\times 3}
The square of \sqrt{3} is 3.
\frac{\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)\sqrt{3}}{1}
Cancel out 3 and 3.
\left(-\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{3}-2\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)\sqrt{3}
Anything divided by one gives itself.
\left(-\left(\sqrt{7}\sqrt{3}-2\sqrt{7}+\sqrt{6}\sqrt{3}-2\sqrt{6}\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)\sqrt{3}
Apply the distributive property by multiplying each term of \sqrt{7}+\sqrt{6} by each term of \sqrt{3}-2.
\left(-\left(\sqrt{21}-2\sqrt{7}+\sqrt{6}\sqrt{3}-2\sqrt{6}\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)\sqrt{3}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
\left(-\left(\sqrt{21}-2\sqrt{7}+\sqrt{3}\sqrt{2}\sqrt{3}-2\sqrt{6}\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)\sqrt{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\left(-\left(\sqrt{21}-2\sqrt{7}+3\sqrt{2}-2\sqrt{6}\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)\sqrt{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\left(-\sqrt{21}-\left(-2\sqrt{7}\right)-3\sqrt{2}-\left(-2\sqrt{6}\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)\sqrt{3}
To find the opposite of \sqrt{21}-2\sqrt{7}+3\sqrt{2}-2\sqrt{6}, find the opposite of each term.
\left(-\sqrt{21}+2\sqrt{7}-3\sqrt{2}-\left(-2\sqrt{6}\right)\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)\sqrt{3}
The opposite of -2\sqrt{7} is 2\sqrt{7}.
\left(-\sqrt{21}+2\sqrt{7}-3\sqrt{2}+2\sqrt{6}\right)\left(-\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{3}+2\right)\right)\sqrt{3}
The opposite of -2\sqrt{6} is 2\sqrt{6}.
\left(-\sqrt{21}+2\sqrt{7}-3\sqrt{2}+2\sqrt{6}\right)\left(-\left(\sqrt{6}\sqrt{3}+2\sqrt{6}-\sqrt{7}\sqrt{3}-2\sqrt{7}\right)\right)\sqrt{3}
Apply the distributive property by multiplying each term of \sqrt{6}-\sqrt{7} by each term of \sqrt{3}+2.
\left(-\sqrt{21}+2\sqrt{7}-3\sqrt{2}+2\sqrt{6}\right)\left(-\left(\sqrt{3}\sqrt{2}\sqrt{3}+2\sqrt{6}-\sqrt{7}\sqrt{3}-2\sqrt{7}\right)\right)\sqrt{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\left(-\sqrt{21}+2\sqrt{7}-3\sqrt{2}+2\sqrt{6}\right)\left(-\left(3\sqrt{2}+2\sqrt{6}-\sqrt{7}\sqrt{3}-2\sqrt{7}\right)\right)\sqrt{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\left(-\sqrt{21}+2\sqrt{7}-3\sqrt{2}+2\sqrt{6}\right)\left(-\left(3\sqrt{2}+2\sqrt{6}-\sqrt{21}-2\sqrt{7}\right)\right)\sqrt{3}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
\left(-\sqrt{21}+2\sqrt{7}-3\sqrt{2}+2\sqrt{6}\right)\left(-3\sqrt{2}-2\sqrt{6}-\left(-\sqrt{21}\right)-\left(-2\sqrt{7}\right)\right)\sqrt{3}
To find the opposite of 3\sqrt{2}+2\sqrt{6}-\sqrt{21}-2\sqrt{7}, find the opposite of each term.
\left(-\sqrt{21}+2\sqrt{7}-3\sqrt{2}+2\sqrt{6}\right)\left(-3\sqrt{2}-2\sqrt{6}+\sqrt{21}-\left(-2\sqrt{7}\right)\right)\sqrt{3}
The opposite of -\sqrt{21} is \sqrt{21}.
\left(-\sqrt{21}+2\sqrt{7}-3\sqrt{2}+2\sqrt{6}\right)\left(-3\sqrt{2}-2\sqrt{6}+\sqrt{21}+2\sqrt{7}\right)\sqrt{3}
The opposite of -2\sqrt{7} is 2\sqrt{7}.
\left(3\sqrt{21}\sqrt{2}+2\sqrt{21}\sqrt{6}-\left(\sqrt{21}\right)^{2}-2\sqrt{21}\sqrt{7}-6\sqrt{7}\sqrt{2}-4\sqrt{7}\sqrt{6}+2\sqrt{7}\sqrt{21}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Apply the distributive property by multiplying each term of -\sqrt{21}+2\sqrt{7}-3\sqrt{2}+2\sqrt{6} by each term of -3\sqrt{2}-2\sqrt{6}+\sqrt{21}+2\sqrt{7}.
\left(3\sqrt{42}+2\sqrt{21}\sqrt{6}-\left(\sqrt{21}\right)^{2}-2\sqrt{21}\sqrt{7}-6\sqrt{7}\sqrt{2}-4\sqrt{7}\sqrt{6}+2\sqrt{7}\sqrt{21}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
To multiply \sqrt{21} and \sqrt{2}, multiply the numbers under the square root.
\left(3\sqrt{42}+2\sqrt{126}-\left(\sqrt{21}\right)^{2}-2\sqrt{21}\sqrt{7}-6\sqrt{7}\sqrt{2}-4\sqrt{7}\sqrt{6}+2\sqrt{7}\sqrt{21}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
To multiply \sqrt{21} and \sqrt{6}, multiply the numbers under the square root.
\left(3\sqrt{42}+2\sqrt{126}-21-2\sqrt{21}\sqrt{7}-6\sqrt{7}\sqrt{2}-4\sqrt{7}\sqrt{6}+2\sqrt{7}\sqrt{21}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
The square of \sqrt{21} is 21.
\left(3\sqrt{42}+2\sqrt{126}-21-2\sqrt{7}\sqrt{3}\sqrt{7}-6\sqrt{7}\sqrt{2}-4\sqrt{7}\sqrt{6}+2\sqrt{7}\sqrt{21}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Factor 21=7\times 3. Rewrite the square root of the product \sqrt{7\times 3} as the product of square roots \sqrt{7}\sqrt{3}.
\left(3\sqrt{42}+2\sqrt{126}-21-2\times 7\sqrt{3}-6\sqrt{7}\sqrt{2}-4\sqrt{7}\sqrt{6}+2\sqrt{7}\sqrt{21}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Multiply \sqrt{7} and \sqrt{7} to get 7.
\left(3\sqrt{42}+2\sqrt{126}-21-14\sqrt{3}-6\sqrt{7}\sqrt{2}-4\sqrt{7}\sqrt{6}+2\sqrt{7}\sqrt{21}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Multiply -2 and 7 to get -14.
\left(3\sqrt{42}+2\sqrt{126}-21-14\sqrt{3}-6\sqrt{14}-4\sqrt{7}\sqrt{6}+2\sqrt{7}\sqrt{21}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
\left(3\sqrt{42}+2\sqrt{126}-21-14\sqrt{3}-6\sqrt{14}-4\sqrt{42}+2\sqrt{7}\sqrt{21}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
To multiply \sqrt{7} and \sqrt{6}, multiply the numbers under the square root.
\left(-\sqrt{42}+2\sqrt{126}-21-14\sqrt{3}-6\sqrt{14}+2\sqrt{7}\sqrt{21}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Combine 3\sqrt{42} and -4\sqrt{42} to get -\sqrt{42}.
\left(-\sqrt{42}+2\sqrt{126}-21-14\sqrt{3}-6\sqrt{14}+2\sqrt{7}\sqrt{7}\sqrt{3}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Factor 21=7\times 3. Rewrite the square root of the product \sqrt{7\times 3} as the product of square roots \sqrt{7}\sqrt{3}.
\left(-\sqrt{42}+2\sqrt{126}-21-14\sqrt{3}-6\sqrt{14}+2\times 7\sqrt{3}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Multiply \sqrt{7} and \sqrt{7} to get 7.
\left(-\sqrt{42}+2\sqrt{126}-21-14\sqrt{3}-6\sqrt{14}+14\sqrt{3}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Multiply 2 and 7 to get 14.
\left(-\sqrt{42}+2\sqrt{126}-21-6\sqrt{14}+4\left(\sqrt{7}\right)^{2}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Combine -14\sqrt{3} and 14\sqrt{3} to get 0.
\left(-\sqrt{42}+2\sqrt{126}-21-6\sqrt{14}+4\times 7+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
The square of \sqrt{7} is 7.
\left(-\sqrt{42}+2\sqrt{126}-21-6\sqrt{14}+28+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Multiply 4 and 7 to get 28.
\left(-\sqrt{42}+2\sqrt{126}+7-6\sqrt{14}+9\left(\sqrt{2}\right)^{2}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Add -21 and 28 to get 7.
\left(-\sqrt{42}+2\sqrt{126}+7-6\sqrt{14}+9\times 2+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
The square of \sqrt{2} is 2.
\left(-\sqrt{42}+2\sqrt{126}+7-6\sqrt{14}+18+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Multiply 9 and 2 to get 18.
\left(-\sqrt{42}+2\sqrt{126}+25-6\sqrt{14}+6\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Add 7 and 18 to get 25.
\left(-\sqrt{42}+2\sqrt{126}+25-6\sqrt{14}+6\sqrt{2}\sqrt{2}\sqrt{3}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\left(-\sqrt{42}+2\sqrt{126}+25-6\sqrt{14}+6\times 2\sqrt{3}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\left(-\sqrt{42}+2\sqrt{126}+25-6\sqrt{14}+12\sqrt{3}-3\sqrt{2}\sqrt{21}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Multiply 6 and 2 to get 12.
\left(-\sqrt{42}+2\sqrt{126}+25-6\sqrt{14}+12\sqrt{3}-3\sqrt{42}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
To multiply \sqrt{2} and \sqrt{21}, multiply the numbers under the square root.
\left(-4\sqrt{42}+2\sqrt{126}+25-6\sqrt{14}+12\sqrt{3}-6\sqrt{7}\sqrt{2}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Combine -\sqrt{42} and -3\sqrt{42} to get -4\sqrt{42}.
\left(-4\sqrt{42}+2\sqrt{126}+25-6\sqrt{14}+12\sqrt{3}-6\sqrt{14}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
\left(-4\sqrt{42}+2\sqrt{126}+25-12\sqrt{14}+12\sqrt{3}-6\sqrt{6}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Combine -6\sqrt{14} and -6\sqrt{14} to get -12\sqrt{14}.
\left(-4\sqrt{42}+2\sqrt{126}+25-12\sqrt{14}+12\sqrt{3}-6\sqrt{2}\sqrt{3}\sqrt{2}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\left(-4\sqrt{42}+2\sqrt{126}+25-12\sqrt{14}+12\sqrt{3}-6\times 2\sqrt{3}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\left(-4\sqrt{42}+2\sqrt{126}+25-12\sqrt{14}+12\sqrt{3}-12\sqrt{3}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Multiply -6 and 2 to get -12.
\left(-4\sqrt{42}+2\sqrt{126}+25-12\sqrt{14}-4\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Combine 12\sqrt{3} and -12\sqrt{3} to get 0.
\left(-4\sqrt{42}+2\sqrt{126}+25-12\sqrt{14}-4\times 6+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
The square of \sqrt{6} is 6.
\left(-4\sqrt{42}+2\sqrt{126}+25-12\sqrt{14}-24+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Multiply -4 and 6 to get -24.
\left(-4\sqrt{42}+2\sqrt{126}+1-12\sqrt{14}+2\sqrt{6}\sqrt{21}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Subtract 24 from 25 to get 1.
\left(-4\sqrt{42}+2\sqrt{126}+1-12\sqrt{14}+2\sqrt{126}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
To multiply \sqrt{6} and \sqrt{21}, multiply the numbers under the square root.
\left(-4\sqrt{42}+4\sqrt{126}+1-12\sqrt{14}+4\sqrt{6}\sqrt{7}\right)\sqrt{3}
Combine 2\sqrt{126} and 2\sqrt{126} to get 4\sqrt{126}.
\left(-4\sqrt{42}+4\sqrt{126}+1-12\sqrt{14}+4\sqrt{42}\right)\sqrt{3}
To multiply \sqrt{6} and \sqrt{7}, multiply the numbers under the square root.
\left(4\sqrt{126}+1-12\sqrt{14}\right)\sqrt{3}
Combine -4\sqrt{42} and 4\sqrt{42} to get 0.
4\sqrt{126}\sqrt{3}+\sqrt{3}-12\sqrt{14}\sqrt{3}
Use the distributive property to multiply 4\sqrt{126}+1-12\sqrt{14} by \sqrt{3}.
4\sqrt{3}\sqrt{42}\sqrt{3}+\sqrt{3}-12\sqrt{14}\sqrt{3}
Factor 126=3\times 42. Rewrite the square root of the product \sqrt{3\times 42} as the product of square roots \sqrt{3}\sqrt{42}.
4\times 3\sqrt{42}+\sqrt{3}-12\sqrt{14}\sqrt{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
12\sqrt{42}+\sqrt{3}-12\sqrt{14}\sqrt{3}
Multiply 4 and 3 to get 12.
12\sqrt{42}+\sqrt{3}-12\sqrt{42}
To multiply \sqrt{14} and \sqrt{3}, multiply the numbers under the square root.
\sqrt{3}
Combine 12\sqrt{42} and -12\sqrt{42} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}