Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}-\frac{5}{\sqrt{5}}}{\frac{1}{\sqrt{5}-\sqrt{2}}}
Rationalize the denominator of \frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}} by multiplying numerator and denominator by 1+\sqrt{3}.
\frac{\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}-\frac{5}{\sqrt{5}}}{\frac{1}{\sqrt{5}-\sqrt{2}}}
Consider \left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{1-3}-\frac{5}{\sqrt{5}}}{\frac{1}{\sqrt{5}-\sqrt{2}}}
Square 1. Square \sqrt{3}.
\frac{\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\frac{5}{\sqrt{5}}}{\frac{1}{\sqrt{5}-\sqrt{2}}}
Subtract 3 from 1 to get -2.
\frac{\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\frac{5\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{\frac{1}{\sqrt{5}-\sqrt{2}}}
Rationalize the denominator of \frac{5}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\frac{5\sqrt{5}}{5}}{\frac{1}{\sqrt{5}-\sqrt{2}}}
The square of \sqrt{5} is 5.
\frac{\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5}}{\frac{1}{\sqrt{5}-\sqrt{2}}}
Cancel out 5 and 5.
\frac{\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5}}{\frac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}}
Rationalize the denominator of \frac{1}{\sqrt{5}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{2}.
\frac{\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5}}{\frac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}}
Consider \left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5}}{\frac{\sqrt{5}+\sqrt{2}}{5-2}}
Square \sqrt{5}. Square \sqrt{2}.
\frac{\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5}}{\frac{\sqrt{5}+\sqrt{2}}{3}}
Subtract 2 from 5 to get 3.
\frac{\left(\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5}\right)\times 3}{\sqrt{5}+\sqrt{2}}
Divide \frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5} by \frac{\sqrt{5}+\sqrt{2}}{3} by multiplying \frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5} by the reciprocal of \frac{\sqrt{5}+\sqrt{2}}{3}.
\frac{\left(\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5}\right)\times 3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}
Rationalize the denominator of \frac{\left(\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5}\right)\times 3}{\sqrt{5}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{2}.
\frac{\left(\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5}\right)\times 3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5}\right)\times 3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}
Square \sqrt{5}. Square \sqrt{2}.
\frac{\left(\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5}\right)\times 3\left(\sqrt{5}-\sqrt{2}\right)}{3}
Subtract 2 from 5 to get 3.
\left(\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)
Cancel out 3 and 3.
\left(\frac{\sqrt{6}+\sqrt{6}\sqrt{3}-\sqrt{2}-\sqrt{2}\sqrt{3}}{-2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)
Apply the distributive property by multiplying each term of \sqrt{6}-\sqrt{2} by each term of 1+\sqrt{3}.
\left(\frac{\sqrt{6}+\sqrt{3}\sqrt{2}\sqrt{3}-\sqrt{2}-\sqrt{2}\sqrt{3}}{-2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\left(\frac{\sqrt{6}+3\sqrt{2}-\sqrt{2}-\sqrt{2}\sqrt{3}}{-2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
\left(\frac{\sqrt{6}+2\sqrt{2}-\sqrt{2}\sqrt{3}}{-2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)
Combine 3\sqrt{2} and -\sqrt{2} to get 2\sqrt{2}.
\left(\frac{\sqrt{6}+2\sqrt{2}-\sqrt{6}}{-2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\left(\frac{2\sqrt{2}}{-2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)
Combine \sqrt{6} and -\sqrt{6} to get 0.
\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)
Cancel out -2 and -2.
\left(-\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(-1\right)^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}
Expand \left(-\sqrt{2}\right)^{2}.
1\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}
Calculate -1 to the power of 2 and get 1.
1\times 2-\left(\sqrt{5}\right)^{2}
The square of \sqrt{2} is 2.
2-\left(\sqrt{5}\right)^{2}
Multiply 1 and 2 to get 2.
2-5
The square of \sqrt{5} is 5.
-3
Subtract 5 from 2 to get -3.