Evaluate
3\sqrt{3}+9-3\sqrt{2}-3\sqrt{6}\approx 2.605042507
Expand
3 \sqrt{3} + 9 - 3 \sqrt{2} - 3 \sqrt{6} = 2.605042507
Share
Copied to clipboard
\frac{\left(\sqrt{6}+3\sqrt{2}-2\sqrt{3}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{6}+3\sqrt{2}-2\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{6\sqrt{2}\sqrt{6}-12\sqrt{2}\sqrt{3}-4\sqrt{3}\sqrt{6}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Square \sqrt{6}+3\sqrt{2}-2\sqrt{3}.
\frac{6\sqrt{2}\sqrt{2}\sqrt{3}-12\sqrt{2}\sqrt{3}-4\sqrt{3}\sqrt{6}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{6\times 2\sqrt{3}-12\sqrt{2}\sqrt{3}-4\sqrt{3}\sqrt{6}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{12\sqrt{3}-12\sqrt{2}\sqrt{3}-4\sqrt{3}\sqrt{6}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply 6 and 2 to get 12.
\frac{12\sqrt{3}-12\sqrt{6}-4\sqrt{3}\sqrt{6}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{12\sqrt{3}-12\sqrt{6}-4\sqrt{3}\sqrt{3}\sqrt{2}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{12\sqrt{3}-12\sqrt{6}-4\times 3\sqrt{2}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply -4 and 3 to get -12.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+4\times 3+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
The square of \sqrt{3} is 3.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+12+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply 4 and 3 to get 12.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+12+9\times 2+\left(\sqrt{6}\right)^{2}}{2^{2}}
The square of \sqrt{2} is 2.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+12+18+\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply 9 and 2 to get 18.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+30+\left(\sqrt{6}\right)^{2}}{2^{2}}
Add 12 and 18 to get 30.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+30+6}{2^{2}}
The square of \sqrt{6} is 6.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+36}{2^{2}}
Add 30 and 6 to get 36.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+36}{4}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{6}+3\sqrt{2}-2\sqrt{3}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{6}+3\sqrt{2}-2\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{6\sqrt{2}\sqrt{6}-12\sqrt{2}\sqrt{3}-4\sqrt{3}\sqrt{6}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Square \sqrt{6}+3\sqrt{2}-2\sqrt{3}.
\frac{6\sqrt{2}\sqrt{2}\sqrt{3}-12\sqrt{2}\sqrt{3}-4\sqrt{3}\sqrt{6}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{6\times 2\sqrt{3}-12\sqrt{2}\sqrt{3}-4\sqrt{3}\sqrt{6}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{12\sqrt{3}-12\sqrt{2}\sqrt{3}-4\sqrt{3}\sqrt{6}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply 6 and 2 to get 12.
\frac{12\sqrt{3}-12\sqrt{6}-4\sqrt{3}\sqrt{6}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{12\sqrt{3}-12\sqrt{6}-4\sqrt{3}\sqrt{3}\sqrt{2}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{12\sqrt{3}-12\sqrt{6}-4\times 3\sqrt{2}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+4\left(\sqrt{3}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply -4 and 3 to get -12.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+4\times 3+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
The square of \sqrt{3} is 3.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+12+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply 4 and 3 to get 12.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+12+9\times 2+\left(\sqrt{6}\right)^{2}}{2^{2}}
The square of \sqrt{2} is 2.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+12+18+\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply 9 and 2 to get 18.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+30+\left(\sqrt{6}\right)^{2}}{2^{2}}
Add 12 and 18 to get 30.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+30+6}{2^{2}}
The square of \sqrt{6} is 6.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+36}{2^{2}}
Add 30 and 6 to get 36.
\frac{12\sqrt{3}-12\sqrt{6}-12\sqrt{2}+36}{4}
Calculate 2 to the power of 2 and get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}