Evaluate
6-2\sqrt{5}\approx 1.527864045
Expand
6-2\sqrt{5}
Share
Copied to clipboard
\left(\frac{\left(\sqrt{5}-5\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{5}-5}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\left(\frac{\left(\sqrt{5}-5\right)\sqrt{5}}{5}\right)^{2}
The square of \sqrt{5} is 5.
\frac{\left(\left(\sqrt{5}-5\right)\sqrt{5}\right)^{2}}{5^{2}}
To raise \frac{\left(\sqrt{5}-5\right)\sqrt{5}}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}-5\right)^{2}\left(\sqrt{5}\right)^{2}}{5^{2}}
Expand \left(\left(\sqrt{5}-5\right)\sqrt{5}\right)^{2}.
\frac{\left(\left(\sqrt{5}\right)^{2}-10\sqrt{5}+25\right)\left(\sqrt{5}\right)^{2}}{5^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-5\right)^{2}.
\frac{\left(5-10\sqrt{5}+25\right)\left(\sqrt{5}\right)^{2}}{5^{2}}
The square of \sqrt{5} is 5.
\frac{\left(30-10\sqrt{5}\right)\left(\sqrt{5}\right)^{2}}{5^{2}}
Add 5 and 25 to get 30.
\frac{\left(30-10\sqrt{5}\right)\times 5}{5^{2}}
The square of \sqrt{5} is 5.
\frac{\left(30-10\sqrt{5}\right)\times 5}{25}
Calculate 5 to the power of 2 and get 25.
\left(30-10\sqrt{5}\right)\times \frac{1}{5}
Divide \left(30-10\sqrt{5}\right)\times 5 by 25 to get \left(30-10\sqrt{5}\right)\times \frac{1}{5}.
6-2\sqrt{5}
Use the distributive property to multiply 30-10\sqrt{5} by \frac{1}{5}.
\left(\frac{\left(\sqrt{5}-5\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{5}-5}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\left(\frac{\left(\sqrt{5}-5\right)\sqrt{5}}{5}\right)^{2}
The square of \sqrt{5} is 5.
\frac{\left(\left(\sqrt{5}-5\right)\sqrt{5}\right)^{2}}{5^{2}}
To raise \frac{\left(\sqrt{5}-5\right)\sqrt{5}}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}-5\right)^{2}\left(\sqrt{5}\right)^{2}}{5^{2}}
Expand \left(\left(\sqrt{5}-5\right)\sqrt{5}\right)^{2}.
\frac{\left(\left(\sqrt{5}\right)^{2}-10\sqrt{5}+25\right)\left(\sqrt{5}\right)^{2}}{5^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-5\right)^{2}.
\frac{\left(5-10\sqrt{5}+25\right)\left(\sqrt{5}\right)^{2}}{5^{2}}
The square of \sqrt{5} is 5.
\frac{\left(30-10\sqrt{5}\right)\left(\sqrt{5}\right)^{2}}{5^{2}}
Add 5 and 25 to get 30.
\frac{\left(30-10\sqrt{5}\right)\times 5}{5^{2}}
The square of \sqrt{5} is 5.
\frac{\left(30-10\sqrt{5}\right)\times 5}{25}
Calculate 5 to the power of 2 and get 25.
\left(30-10\sqrt{5}\right)\times \frac{1}{5}
Divide \left(30-10\sqrt{5}\right)\times 5 by 25 to get \left(30-10\sqrt{5}\right)\times \frac{1}{5}.
6-2\sqrt{5}
Use the distributive property to multiply 30-10\sqrt{5} by \frac{1}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}