Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(\sqrt{5}-5\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{5}-5}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\left(\frac{\left(\sqrt{5}-5\right)\sqrt{5}}{5}\right)^{2}
The square of \sqrt{5} is 5.
\frac{\left(\left(\sqrt{5}-5\right)\sqrt{5}\right)^{2}}{5^{2}}
To raise \frac{\left(\sqrt{5}-5\right)\sqrt{5}}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}-5\right)^{2}\left(\sqrt{5}\right)^{2}}{5^{2}}
Expand \left(\left(\sqrt{5}-5\right)\sqrt{5}\right)^{2}.
\frac{\left(\left(\sqrt{5}\right)^{2}-10\sqrt{5}+25\right)\left(\sqrt{5}\right)^{2}}{5^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-5\right)^{2}.
\frac{\left(5-10\sqrt{5}+25\right)\left(\sqrt{5}\right)^{2}}{5^{2}}
The square of \sqrt{5} is 5.
\frac{\left(30-10\sqrt{5}\right)\left(\sqrt{5}\right)^{2}}{5^{2}}
Add 5 and 25 to get 30.
\frac{\left(30-10\sqrt{5}\right)\times 5}{5^{2}}
The square of \sqrt{5} is 5.
\frac{\left(30-10\sqrt{5}\right)\times 5}{25}
Calculate 5 to the power of 2 and get 25.
\left(30-10\sqrt{5}\right)\times \frac{1}{5}
Divide \left(30-10\sqrt{5}\right)\times 5 by 25 to get \left(30-10\sqrt{5}\right)\times \frac{1}{5}.
6-2\sqrt{5}
Use the distributive property to multiply 30-10\sqrt{5} by \frac{1}{5}.
\left(\frac{\left(\sqrt{5}-5\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{5}-5}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\left(\frac{\left(\sqrt{5}-5\right)\sqrt{5}}{5}\right)^{2}
The square of \sqrt{5} is 5.
\frac{\left(\left(\sqrt{5}-5\right)\sqrt{5}\right)^{2}}{5^{2}}
To raise \frac{\left(\sqrt{5}-5\right)\sqrt{5}}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}-5\right)^{2}\left(\sqrt{5}\right)^{2}}{5^{2}}
Expand \left(\left(\sqrt{5}-5\right)\sqrt{5}\right)^{2}.
\frac{\left(\left(\sqrt{5}\right)^{2}-10\sqrt{5}+25\right)\left(\sqrt{5}\right)^{2}}{5^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-5\right)^{2}.
\frac{\left(5-10\sqrt{5}+25\right)\left(\sqrt{5}\right)^{2}}{5^{2}}
The square of \sqrt{5} is 5.
\frac{\left(30-10\sqrt{5}\right)\left(\sqrt{5}\right)^{2}}{5^{2}}
Add 5 and 25 to get 30.
\frac{\left(30-10\sqrt{5}\right)\times 5}{5^{2}}
The square of \sqrt{5} is 5.
\frac{\left(30-10\sqrt{5}\right)\times 5}{25}
Calculate 5 to the power of 2 and get 25.
\left(30-10\sqrt{5}\right)\times \frac{1}{5}
Divide \left(30-10\sqrt{5}\right)\times 5 by 25 to get \left(30-10\sqrt{5}\right)\times \frac{1}{5}.
6-2\sqrt{5}
Use the distributive property to multiply 30-10\sqrt{5} by \frac{1}{5}.