Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{5}-\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-\sqrt{3}\right)^{2}.
\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2^{2}}
The square of \sqrt{5} is 5.
\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2^{2}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{5-2\sqrt{15}+3}{2^{2}}
The square of \sqrt{3} is 3.
\frac{8-2\sqrt{15}}{2^{2}}
Add 5 and 3 to get 8.
\frac{8-2\sqrt{15}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{5}-\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-\sqrt{3}\right)^{2}.
\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2^{2}}
The square of \sqrt{5} is 5.
\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2^{2}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{5-2\sqrt{15}+3}{2^{2}}
The square of \sqrt{3} is 3.
\frac{8-2\sqrt{15}}{2^{2}}
Add 5 and 3 to get 8.
\frac{8-2\sqrt{15}}{4}
Calculate 2 to the power of 2 and get 4.