Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}-\frac{\sqrt{2}}{\sqrt{15}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\sqrt{5}\sqrt{6}}{6}-\frac{\sqrt{2}}{\sqrt{15}}
The square of \sqrt{6} is 6.
\frac{\sqrt{30}}{6}-\frac{\sqrt{2}}{\sqrt{15}}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
\frac{\sqrt{30}}{6}-\frac{\sqrt{2}\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\sqrt{30}}{6}-\frac{\sqrt{2}\sqrt{15}}{15}
The square of \sqrt{15} is 15.
\frac{\sqrt{30}}{6}-\frac{\sqrt{30}}{15}
To multiply \sqrt{2} and \sqrt{15}, multiply the numbers under the square root.
\frac{1}{10}\sqrt{30}
Combine \frac{\sqrt{30}}{6} and -\frac{\sqrt{30}}{15} to get \frac{1}{10}\sqrt{30}.