Evaluate
\frac{4\sqrt{5}}{9}+1\approx 1.99380799
Expand
\frac{4 \sqrt{5}}{9} + 1 = 1.99380799
Share
Copied to clipboard
\frac{\left(\sqrt{5}+2\right)^{2}}{3^{2}}
To raise \frac{\sqrt{5}+2}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}\right)^{2}+4\sqrt{5}+4}{3^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+2\right)^{2}.
\frac{5+4\sqrt{5}+4}{3^{2}}
The square of \sqrt{5} is 5.
\frac{9+4\sqrt{5}}{3^{2}}
Add 5 and 4 to get 9.
\frac{9+4\sqrt{5}}{9}
Calculate 3 to the power of 2 and get 9.
\frac{\left(\sqrt{5}+2\right)^{2}}{3^{2}}
To raise \frac{\sqrt{5}+2}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}\right)^{2}+4\sqrt{5}+4}{3^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+2\right)^{2}.
\frac{5+4\sqrt{5}+4}{3^{2}}
The square of \sqrt{5} is 5.
\frac{9+4\sqrt{5}}{3^{2}}
Add 5 and 4 to get 9.
\frac{9+4\sqrt{5}}{9}
Calculate 3 to the power of 2 and get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}