Evaluate
62
Factor
2\times 31
Share
Copied to clipboard
\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\right)^{2}+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{3}.
\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}\right)^{2}+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
Consider \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{5-3}\right)^{2}+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
Square \sqrt{5}. Square \sqrt{3}.
\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{2}\right)^{2}+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
Subtract 3 from 5 to get 2.
\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{2}\right)^{2}+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
Multiply \sqrt{5}+\sqrt{3} and \sqrt{5}+\sqrt{3} to get \left(\sqrt{5}+\sqrt{3}\right)^{2}.
\left(\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}\right)^{2}+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+\sqrt{3}\right)^{2}.
\left(\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}\right)^{2}+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
The square of \sqrt{5} is 5.
\left(\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}\right)^{2}+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\left(\frac{5+2\sqrt{15}+3}{2}\right)^{2}+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
The square of \sqrt{3} is 3.
\left(\frac{8+2\sqrt{15}}{2}\right)^{2}+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
Add 5 and 3 to get 8.
\left(4+\sqrt{15}\right)^{2}+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
Divide each term of 8+2\sqrt{15} by 2 to get 4+\sqrt{15}.
16+8\sqrt{15}+\left(\sqrt{15}\right)^{2}+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+\sqrt{15}\right)^{2}.
16+8\sqrt{15}+15+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
The square of \sqrt{15} is 15.
31+8\sqrt{15}+\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}
Add 16 and 15 to get 31.
31+8\sqrt{15}+\left(\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\right)^{2}
Rationalize the denominator of \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
31+8\sqrt{15}+\left(\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}\right)^{2}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
31+8\sqrt{15}+\left(\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}\right)^{2}
Square \sqrt{5}. Square \sqrt{3}.
31+8\sqrt{15}+\left(\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}\right)^{2}
Subtract 3 from 5 to get 2.
31+8\sqrt{15}+\left(\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{2}\right)^{2}
Multiply \sqrt{5}-\sqrt{3} and \sqrt{5}-\sqrt{3} to get \left(\sqrt{5}-\sqrt{3}\right)^{2}.
31+8\sqrt{15}+\left(\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-\sqrt{3}\right)^{2}.
31+8\sqrt{15}+\left(\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}\right)^{2}
The square of \sqrt{5} is 5.
31+8\sqrt{15}+\left(\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
31+8\sqrt{15}+\left(\frac{5-2\sqrt{15}+3}{2}\right)^{2}
The square of \sqrt{3} is 3.
31+8\sqrt{15}+\left(\frac{8-2\sqrt{15}}{2}\right)^{2}
Add 5 and 3 to get 8.
31+8\sqrt{15}+\left(4-\sqrt{15}\right)^{2}
Divide each term of 8-2\sqrt{15} by 2 to get 4-\sqrt{15}.
31+8\sqrt{15}+16-8\sqrt{15}+\left(\sqrt{15}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-\sqrt{15}\right)^{2}.
31+8\sqrt{15}+16-8\sqrt{15}+15
The square of \sqrt{15} is 15.
31+8\sqrt{15}+31-8\sqrt{15}
Add 16 and 15 to get 31.
62+8\sqrt{15}-8\sqrt{15}
Add 31 and 31 to get 62.
62
Combine 8\sqrt{15} and -8\sqrt{15} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}