Evaluate
64-2\sqrt{15}\approx 56.254033308
Share
Copied to clipboard
\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Rationalize the denominator of \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{3}.
\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Consider \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Square \sqrt{5}. Square \sqrt{3}.
\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Subtract 3 from 5 to get 2.
\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Multiply \sqrt{5}+\sqrt{3} and \sqrt{5}+\sqrt{3} to get \left(\sqrt{5}+\sqrt{3}\right)^{2}.
\left(\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+\sqrt{3}\right)^{2}.
\left(\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
The square of \sqrt{5} is 5.
\left(\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\left(\frac{5+2\sqrt{15}+3}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
The square of \sqrt{3} is 3.
\left(\frac{8+2\sqrt{15}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Add 5 and 3 to get 8.
\left(4+\sqrt{15}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Divide each term of 8+2\sqrt{15} by 2 to get 4+\sqrt{15}.
\left(4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Rationalize the denominator of \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\left(4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Square \sqrt{5}. Square \sqrt{3}.
\left(4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Subtract 3 from 5 to get 2.
\left(4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{2}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Multiply \sqrt{5}-\sqrt{3} and \sqrt{5}-\sqrt{3} to get \left(\sqrt{5}-\sqrt{3}\right)^{2}.
\left(4+\sqrt{15}+\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-\sqrt{3}\right)^{2}.
\left(4+\sqrt{15}+\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
The square of \sqrt{5} is 5.
\left(4+\sqrt{15}+\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\left(4+\sqrt{15}+\frac{5-2\sqrt{15}+3}{2}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
The square of \sqrt{3} is 3.
\left(4+\sqrt{15}+\frac{8-2\sqrt{15}}{2}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Add 5 and 3 to get 8.
\left(4+\sqrt{15}+4-\sqrt{15}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Divide each term of 8-2\sqrt{15} by 2 to get 4-\sqrt{15}.
\left(8+\sqrt{15}-\sqrt{15}\right)^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Add 4 and 4 to get 8.
8^{2}-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Combine \sqrt{15} and -\sqrt{15} to get 0.
64-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Calculate 8 to the power of 2 and get 64.
64-\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Rationalize the denominator of \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{3}.
64-\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Consider \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
64-\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Square \sqrt{5}. Square \sqrt{3}.
64-\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Subtract 3 from 5 to get 2.
64-\left(\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Multiply \sqrt{5}+\sqrt{3} and \sqrt{5}+\sqrt{3} to get \left(\sqrt{5}+\sqrt{3}\right)^{2}.
64-\left(\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+\sqrt{3}\right)^{2}.
64-\left(\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
The square of \sqrt{5} is 5.
64-\left(\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
64-\left(\frac{5+2\sqrt{15}+3}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
The square of \sqrt{3} is 3.
64-\left(\frac{8+2\sqrt{15}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Add 5 and 3 to get 8.
64-\left(4+\sqrt{15}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)
Divide each term of 8+2\sqrt{15} by 2 to get 4+\sqrt{15}.
64-\left(4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\right)
Rationalize the denominator of \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
64-\left(4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}\right)
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
64-\left(4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}\right)
Square \sqrt{5}. Square \sqrt{3}.
64-\left(4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}\right)
Subtract 3 from 5 to get 2.
64-\left(4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{2}\right)
Multiply \sqrt{5}-\sqrt{3} and \sqrt{5}-\sqrt{3} to get \left(\sqrt{5}-\sqrt{3}\right)^{2}.
64-\left(4+\sqrt{15}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-\sqrt{3}\right)^{2}.
64-\left(4+\sqrt{15}-\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}\right)
The square of \sqrt{5} is 5.
64-\left(4+\sqrt{15}-\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}\right)
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
64-\left(4+\sqrt{15}-\frac{5-2\sqrt{15}+3}{2}\right)
The square of \sqrt{3} is 3.
64-\left(4+\sqrt{15}-\frac{8-2\sqrt{15}}{2}\right)
Add 5 and 3 to get 8.
64-\left(4+\sqrt{15}-\left(4-\sqrt{15}\right)\right)
Divide each term of 8-2\sqrt{15} by 2 to get 4-\sqrt{15}.
64-\left(4+\sqrt{15}-4+\sqrt{15}\right)
To find the opposite of 4-\sqrt{15}, find the opposite of each term.
64-\left(\sqrt{15}+\sqrt{15}\right)
Subtract 4 from 4 to get 0.
64-2\sqrt{15}
Combine \sqrt{15} and \sqrt{15} to get 2\sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}