Evaluate
\frac{87-9\sqrt{41}}{2}\approx 14.685940932
Expand
\frac{87 - 9 \sqrt{41}}{2} = 14.685940931552182
Share
Copied to clipboard
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+\left(\sqrt{41}-3\right)^{2}-\frac{41-3}{2}
To raise \frac{\sqrt{41}+3}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+\left(\sqrt{41}\right)^{2}-6\sqrt{41}+9-\frac{41-3}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{41}-3\right)^{2}.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+41-6\sqrt{41}+9-\frac{41-3}{2}
The square of \sqrt{41} is 41.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+50-6\sqrt{41}-\frac{41-3}{2}
Add 41 and 9 to get 50.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+50-6\sqrt{41}-\frac{38}{2}
Subtract 3 from 41 to get 38.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+50-6\sqrt{41}-19
Divide 38 by 2 to get 19.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+31-6\sqrt{41}
Subtract 19 from 50 to get 31.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+\frac{\left(31-6\sqrt{41}\right)\times 2^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 31-6\sqrt{41} times \frac{2^{2}}{2^{2}}.
\frac{\left(\sqrt{41}+3\right)^{2}+\left(31-6\sqrt{41}\right)\times 2^{2}}{2^{2}}
Since \frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}} and \frac{\left(31-6\sqrt{41}\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{41}\right)^{2}+6\sqrt{41}+9+124-24\sqrt{41}}{2^{2}}
Do the multiplications in \left(\sqrt{41}+3\right)^{2}+\left(31-6\sqrt{41}\right)\times 2^{2}.
\frac{174-18\sqrt{41}}{2^{2}}
Do the calculations in \left(\sqrt{41}\right)^{2}+6\sqrt{41}+9+124-24\sqrt{41}.
\frac{174-18\sqrt{41}}{4}
Expand 2^{2}.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+\left(\sqrt{41}-3\right)^{2}-\frac{41-3}{2}
To raise \frac{\sqrt{41}+3}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+\left(\sqrt{41}\right)^{2}-6\sqrt{41}+9-\frac{41-3}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{41}-3\right)^{2}.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+41-6\sqrt{41}+9-\frac{41-3}{2}
The square of \sqrt{41} is 41.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+50-6\sqrt{41}-\frac{41-3}{2}
Add 41 and 9 to get 50.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+50-6\sqrt{41}-\frac{38}{2}
Subtract 3 from 41 to get 38.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+50-6\sqrt{41}-19
Divide 38 by 2 to get 19.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+31-6\sqrt{41}
Subtract 19 from 50 to get 31.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+\frac{\left(31-6\sqrt{41}\right)\times 2^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 31-6\sqrt{41} times \frac{2^{2}}{2^{2}}.
\frac{\left(\sqrt{41}+3\right)^{2}+\left(31-6\sqrt{41}\right)\times 2^{2}}{2^{2}}
Since \frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}} and \frac{\left(31-6\sqrt{41}\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{41}\right)^{2}+6\sqrt{41}+9+124-24\sqrt{41}}{2^{2}}
Do the multiplications in \left(\sqrt{41}+3\right)^{2}+\left(31-6\sqrt{41}\right)\times 2^{2}.
\frac{174-18\sqrt{41}}{2^{2}}
Do the calculations in \left(\sqrt{41}\right)^{2}+6\sqrt{41}+9+124-24\sqrt{41}.
\frac{174-18\sqrt{41}}{4}
Expand 2^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}