Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+\left(\sqrt{41}-3\right)^{2}-\frac{41-3}{2}
To raise \frac{\sqrt{41}+3}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+\left(\sqrt{41}\right)^{2}-6\sqrt{41}+9-\frac{41-3}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{41}-3\right)^{2}.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+41-6\sqrt{41}+9-\frac{41-3}{2}
The square of \sqrt{41} is 41.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+50-6\sqrt{41}-\frac{41-3}{2}
Add 41 and 9 to get 50.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+50-6\sqrt{41}-\frac{38}{2}
Subtract 3 from 41 to get 38.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+50-6\sqrt{41}-19
Divide 38 by 2 to get 19.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+31-6\sqrt{41}
Subtract 19 from 50 to get 31.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+\frac{\left(31-6\sqrt{41}\right)\times 2^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 31-6\sqrt{41} times \frac{2^{2}}{2^{2}}.
\frac{\left(\sqrt{41}+3\right)^{2}+\left(31-6\sqrt{41}\right)\times 2^{2}}{2^{2}}
Since \frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}} and \frac{\left(31-6\sqrt{41}\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{41}\right)^{2}+6\sqrt{41}+9+124-24\sqrt{41}}{2^{2}}
Do the multiplications in \left(\sqrt{41}+3\right)^{2}+\left(31-6\sqrt{41}\right)\times 2^{2}.
\frac{174-18\sqrt{41}}{2^{2}}
Do the calculations in \left(\sqrt{41}\right)^{2}+6\sqrt{41}+9+124-24\sqrt{41}.
\frac{174-18\sqrt{41}}{4}
Expand 2^{2}.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+\left(\sqrt{41}-3\right)^{2}-\frac{41-3}{2}
To raise \frac{\sqrt{41}+3}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+\left(\sqrt{41}\right)^{2}-6\sqrt{41}+9-\frac{41-3}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{41}-3\right)^{2}.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+41-6\sqrt{41}+9-\frac{41-3}{2}
The square of \sqrt{41} is 41.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+50-6\sqrt{41}-\frac{41-3}{2}
Add 41 and 9 to get 50.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+50-6\sqrt{41}-\frac{38}{2}
Subtract 3 from 41 to get 38.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+50-6\sqrt{41}-19
Divide 38 by 2 to get 19.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+31-6\sqrt{41}
Subtract 19 from 50 to get 31.
\frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}}+\frac{\left(31-6\sqrt{41}\right)\times 2^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 31-6\sqrt{41} times \frac{2^{2}}{2^{2}}.
\frac{\left(\sqrt{41}+3\right)^{2}+\left(31-6\sqrt{41}\right)\times 2^{2}}{2^{2}}
Since \frac{\left(\sqrt{41}+3\right)^{2}}{2^{2}} and \frac{\left(31-6\sqrt{41}\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{41}\right)^{2}+6\sqrt{41}+9+124-24\sqrt{41}}{2^{2}}
Do the multiplications in \left(\sqrt{41}+3\right)^{2}+\left(31-6\sqrt{41}\right)\times 2^{2}.
\frac{174-18\sqrt{41}}{2^{2}}
Do the calculations in \left(\sqrt{41}\right)^{2}+6\sqrt{41}+9+124-24\sqrt{41}.
\frac{174-18\sqrt{41}}{4}
Expand 2^{2}.