Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\right)^{2}
Rationalize the denominator of \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{2}.
\left(\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}\right)^{2}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{3-2}\right)^{2}
Square \sqrt{3}. Square \sqrt{2}.
\left(\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{1}\right)^{2}
Subtract 2 from 3 to get 1.
\left(\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)\right)^{2}
Anything divided by one gives itself.
\left(\left(\sqrt{3}-\sqrt{2}\right)^{2}\right)^{2}
Multiply \sqrt{3}-\sqrt{2} and \sqrt{3}-\sqrt{2} to get \left(\sqrt{3}-\sqrt{2}\right)^{2}.
\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-\sqrt{2}\right)^{2}.
\left(3-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)^{2}
The square of \sqrt{3} is 3.
\left(3-2\sqrt{6}+\left(\sqrt{2}\right)^{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(3-2\sqrt{6}+2\right)^{2}
The square of \sqrt{2} is 2.
\left(5-2\sqrt{6}\right)^{2}
Add 3 and 2 to get 5.
25-20\sqrt{6}+4\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2\sqrt{6}\right)^{2}.
25-20\sqrt{6}+4\times 6
The square of \sqrt{6} is 6.
25-20\sqrt{6}+24
Multiply 4 and 6 to get 24.
49-20\sqrt{6}
Add 25 and 24 to get 49.
\left(\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\right)^{2}
Rationalize the denominator of \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{2}.
\left(\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}\right)^{2}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{3-2}\right)^{2}
Square \sqrt{3}. Square \sqrt{2}.
\left(\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{1}\right)^{2}
Subtract 2 from 3 to get 1.
\left(\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)\right)^{2}
Anything divided by one gives itself.
\left(\left(\sqrt{3}-\sqrt{2}\right)^{2}\right)^{2}
Multiply \sqrt{3}-\sqrt{2} and \sqrt{3}-\sqrt{2} to get \left(\sqrt{3}-\sqrt{2}\right)^{2}.
\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-\sqrt{2}\right)^{2}.
\left(3-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)^{2}
The square of \sqrt{3} is 3.
\left(3-2\sqrt{6}+\left(\sqrt{2}\right)^{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(3-2\sqrt{6}+2\right)^{2}
The square of \sqrt{2} is 2.
\left(5-2\sqrt{6}\right)^{2}
Add 3 and 2 to get 5.
25-20\sqrt{6}+4\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2\sqrt{6}\right)^{2}.
25-20\sqrt{6}+4\times 6
The square of \sqrt{6} is 6.
25-20\sqrt{6}+24
Multiply 4 and 6 to get 24.
49-20\sqrt{6}
Add 25 and 24 to get 49.