Evaluate
\frac{31}{10}-\sqrt{6}\approx 0.650510257
Expand
\frac{31}{10} - \sqrt{6} = 0.650510257
Share
Copied to clipboard
\left(\frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{\sqrt{5}}{\sqrt{2}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\left(\frac{\sqrt{3}\sqrt{5}}{5}-\frac{\sqrt{5}}{\sqrt{2}}\right)^{2}
The square of \sqrt{5} is 5.
\left(\frac{\sqrt{15}}{5}-\frac{\sqrt{5}}{\sqrt{2}}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\left(\frac{\sqrt{15}}{5}-\frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\sqrt{15}}{5}-\frac{\sqrt{5}\sqrt{2}}{2}\right)^{2}
The square of \sqrt{2} is 2.
\left(\frac{\sqrt{15}}{5}-\frac{\sqrt{10}}{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\left(\frac{2\sqrt{15}}{10}-\frac{5\sqrt{10}}{10}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 2 is 10. Multiply \frac{\sqrt{15}}{5} times \frac{2}{2}. Multiply \frac{\sqrt{10}}{2} times \frac{5}{5}.
\left(\frac{2\sqrt{15}-5\sqrt{10}}{10}\right)^{2}
Since \frac{2\sqrt{15}}{10} and \frac{5\sqrt{10}}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(2\sqrt{15}-5\sqrt{10}\right)^{2}}{10^{2}}
To raise \frac{2\sqrt{15}-5\sqrt{10}}{10} to a power, raise both numerator and denominator to the power and then divide.
\frac{4\left(\sqrt{15}\right)^{2}-20\sqrt{15}\sqrt{10}+25\left(\sqrt{10}\right)^{2}}{10^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{15}-5\sqrt{10}\right)^{2}.
\frac{4\times 15-20\sqrt{15}\sqrt{10}+25\left(\sqrt{10}\right)^{2}}{10^{2}}
The square of \sqrt{15} is 15.
\frac{60-20\sqrt{15}\sqrt{10}+25\left(\sqrt{10}\right)^{2}}{10^{2}}
Multiply 4 and 15 to get 60.
\frac{60-20\sqrt{150}+25\left(\sqrt{10}\right)^{2}}{10^{2}}
To multiply \sqrt{15} and \sqrt{10}, multiply the numbers under the square root.
\frac{60-20\sqrt{150}+25\times 10}{10^{2}}
The square of \sqrt{10} is 10.
\frac{60-20\sqrt{150}+250}{10^{2}}
Multiply 25 and 10 to get 250.
\frac{310-20\sqrt{150}}{10^{2}}
Add 60 and 250 to get 310.
\frac{310-20\times 5\sqrt{6}}{10^{2}}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
\frac{310-100\sqrt{6}}{10^{2}}
Multiply -20 and 5 to get -100.
\frac{310-100\sqrt{6}}{100}
Calculate 10 to the power of 2 and get 100.
\left(\frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{\sqrt{5}}{\sqrt{2}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\left(\frac{\sqrt{3}\sqrt{5}}{5}-\frac{\sqrt{5}}{\sqrt{2}}\right)^{2}
The square of \sqrt{5} is 5.
\left(\frac{\sqrt{15}}{5}-\frac{\sqrt{5}}{\sqrt{2}}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\left(\frac{\sqrt{15}}{5}-\frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\sqrt{15}}{5}-\frac{\sqrt{5}\sqrt{2}}{2}\right)^{2}
The square of \sqrt{2} is 2.
\left(\frac{\sqrt{15}}{5}-\frac{\sqrt{10}}{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\left(\frac{2\sqrt{15}}{10}-\frac{5\sqrt{10}}{10}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 2 is 10. Multiply \frac{\sqrt{15}}{5} times \frac{2}{2}. Multiply \frac{\sqrt{10}}{2} times \frac{5}{5}.
\left(\frac{2\sqrt{15}-5\sqrt{10}}{10}\right)^{2}
Since \frac{2\sqrt{15}}{10} and \frac{5\sqrt{10}}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(2\sqrt{15}-5\sqrt{10}\right)^{2}}{10^{2}}
To raise \frac{2\sqrt{15}-5\sqrt{10}}{10} to a power, raise both numerator and denominator to the power and then divide.
\frac{4\left(\sqrt{15}\right)^{2}-20\sqrt{15}\sqrt{10}+25\left(\sqrt{10}\right)^{2}}{10^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{15}-5\sqrt{10}\right)^{2}.
\frac{4\times 15-20\sqrt{15}\sqrt{10}+25\left(\sqrt{10}\right)^{2}}{10^{2}}
The square of \sqrt{15} is 15.
\frac{60-20\sqrt{15}\sqrt{10}+25\left(\sqrt{10}\right)^{2}}{10^{2}}
Multiply 4 and 15 to get 60.
\frac{60-20\sqrt{150}+25\left(\sqrt{10}\right)^{2}}{10^{2}}
To multiply \sqrt{15} and \sqrt{10}, multiply the numbers under the square root.
\frac{60-20\sqrt{150}+25\times 10}{10^{2}}
The square of \sqrt{10} is 10.
\frac{60-20\sqrt{150}+250}{10^{2}}
Multiply 25 and 10 to get 250.
\frac{310-20\sqrt{150}}{10^{2}}
Add 60 and 250 to get 310.
\frac{310-20\times 5\sqrt{6}}{10^{2}}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
\frac{310-100\sqrt{6}}{10^{2}}
Multiply -20 and 5 to get -100.
\frac{310-100\sqrt{6}}{100}
Calculate 10 to the power of 2 and get 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}