Skip to main content
Solve for K
Tick mark Image

Similar Problems from Web Search

Share

4\left(\frac{3\sqrt{24\sqrt{2}}}{4}+3\sqrt{2}-\frac{7}{4}\right)K-4K=\sqrt{8\sqrt{2}-1}-4\sqrt{6}-\sqrt{3}
Multiply both sides of the equation by 4.
4\left(\frac{3\sqrt{24\sqrt{2}}-7}{4}+3\sqrt{2}\right)K-4K=\sqrt{8\sqrt{2}-1}-4\sqrt{6}-\sqrt{3}
Since \frac{3\sqrt{24\sqrt{2}}}{4} and \frac{7}{4} have the same denominator, subtract them by subtracting their numerators.
4\left(\frac{6\sqrt[4]{72}-7}{4}+3\sqrt{2}\right)K-4K=\sqrt{8\sqrt{2}-1}-4\sqrt{6}-\sqrt{3}
Do the multiplications in 3\sqrt{24\sqrt{2}}-7.
\left(4\times \frac{6\sqrt[4]{72}-7}{4}+12\sqrt{2}\right)K-4K=\sqrt{8\sqrt{2}-1}-4\sqrt{6}-\sqrt{3}
Use the distributive property to multiply 4 by \frac{6\sqrt[4]{72}-7}{4}+3\sqrt{2}.
\left(\frac{4\left(6\sqrt[4]{72}-7\right)}{4}+12\sqrt{2}\right)K-4K=\sqrt{8\sqrt{2}-1}-4\sqrt{6}-\sqrt{3}
Express 4\times \frac{6\sqrt[4]{72}-7}{4} as a single fraction.
\left(6\sqrt[4]{72}-7+12\sqrt{2}\right)K-4K=\sqrt{8\sqrt{2}-1}-4\sqrt{6}-\sqrt{3}
Cancel out 4 and 4.
6\sqrt[4]{72}K-7K+12\sqrt{2}K-4K=\sqrt{8\sqrt{2}-1}-4\sqrt{6}-\sqrt{3}
Use the distributive property to multiply 6\sqrt[4]{72}-7+12\sqrt{2} by K.
6\sqrt[4]{72}K-11K+12\sqrt{2}K=\sqrt{8\sqrt{2}-1}-4\sqrt{6}-\sqrt{3}
Combine -7K and -4K to get -11K.
\left(6\sqrt[4]{72}-11+12\sqrt{2}\right)K=\sqrt{8\sqrt{2}-1}-4\sqrt{6}-\sqrt{3}
Combine all terms containing K.
\left(6\sqrt[4]{72}+12\sqrt{2}-11\right)K=\sqrt{8\sqrt{2}-1}-\sqrt{3}-4\sqrt{6}
The equation is in standard form.
\frac{\left(6\sqrt[4]{72}+12\sqrt{2}-11\right)K}{6\sqrt[4]{72}+12\sqrt{2}-11}=\frac{\sqrt{8\sqrt{2}-1}-\sqrt{3}-4\sqrt{6}}{6\sqrt[4]{72}+12\sqrt{2}-11}
Divide both sides by 6\sqrt[4]{72}-11+12\sqrt{2}.
K=\frac{\sqrt{8\sqrt{2}-1}-\sqrt{3}-4\sqrt{6}}{6\sqrt[4]{72}+12\sqrt{2}-11}
Dividing by 6\sqrt[4]{72}-11+12\sqrt{2} undoes the multiplication by 6\sqrt[4]{72}-11+12\sqrt{2}.