Evaluate
\frac{\left(\sqrt{-\left(9-2x\right)}-1\right)\left(\left(9-2x\right)^{\frac{2}{3}}-\sqrt[3]{9-2x}+1\right)}{2\left(5-x\right)}
Differentiate w.r.t. x
\frac{8\sqrt[3]{9-2x}x^{2}-3\left(9-2x\right)^{\frac{7}{3}}-3x\left(9-2x\right)^{\frac{4}{3}}+2x^{2}-4\sqrt[3]{9-2x}\sqrt{-\left(9-2x\right)}x-3\sqrt{-\left(9-2x\right)}\left(9-2x\right)^{\frac{4}{3}}+3\left(9-2x\right)^{\frac{2}{3}}x-4\sqrt{-\left(9-2x\right)}x-76\sqrt[3]{9-2x}x+15\left(9-2x\right)^{\frac{4}{3}}-3\sqrt{-\left(9-2x\right)}\left(9-2x\right)^{\frac{2}{3}}-13x+20\sqrt[3]{9-2x}\sqrt{-\left(9-2x\right)}-12\left(9-2x\right)^{\frac{2}{3}}+17\sqrt{-\left(9-2x\right)}+180\sqrt[3]{9-2x}+18}{6\sqrt{-\left(9-2x\right)}\left(9-2x\right)^{\frac{2}{3}}\left(5-x\right)^{2}}
Graph
Quiz
Algebra
5 problems similar to:
( \frac { \sqrt { 2 x - 9 } - 1 } { 1 + \sqrt[ 3 ] { 9 - 2 x } } ) =
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}