Evaluate
\frac{13}{2}-2\sqrt{3}\approx 3.035898385
Expand
\frac{13}{2} - 2 \sqrt{3} = 3.035898385
Share
Copied to clipboard
\left(\frac{\sqrt{2}}{2}-\frac{2\sqrt{6}}{2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{6} times \frac{2}{2}.
\left(\frac{\sqrt{2}-2\sqrt{6}}{2}\right)^{2}
Since \frac{\sqrt{2}}{2} and \frac{2\sqrt{6}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{2}-2\sqrt{6}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{2}-2\sqrt{6}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}\right)^{2}-4\sqrt{2}\sqrt{6}+4\left(\sqrt{6}\right)^{2}}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-2\sqrt{6}\right)^{2}.
\frac{2-4\sqrt{2}\sqrt{6}+4\left(\sqrt{6}\right)^{2}}{2^{2}}
The square of \sqrt{2} is 2.
\frac{2-4\sqrt{2}\sqrt{2}\sqrt{3}+4\left(\sqrt{6}\right)^{2}}{2^{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{2-4\times 2\sqrt{3}+4\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{2-8\sqrt{3}+4\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply -4 and 2 to get -8.
\frac{2-8\sqrt{3}+4\times 6}{2^{2}}
The square of \sqrt{6} is 6.
\frac{2-8\sqrt{3}+24}{2^{2}}
Multiply 4 and 6 to get 24.
\frac{26-8\sqrt{3}}{2^{2}}
Add 2 and 24 to get 26.
\frac{26-8\sqrt{3}}{4}
Calculate 2 to the power of 2 and get 4.
\left(\frac{\sqrt{2}}{2}-\frac{2\sqrt{6}}{2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{6} times \frac{2}{2}.
\left(\frac{\sqrt{2}-2\sqrt{6}}{2}\right)^{2}
Since \frac{\sqrt{2}}{2} and \frac{2\sqrt{6}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{2}-2\sqrt{6}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{2}-2\sqrt{6}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}\right)^{2}-4\sqrt{2}\sqrt{6}+4\left(\sqrt{6}\right)^{2}}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-2\sqrt{6}\right)^{2}.
\frac{2-4\sqrt{2}\sqrt{6}+4\left(\sqrt{6}\right)^{2}}{2^{2}}
The square of \sqrt{2} is 2.
\frac{2-4\sqrt{2}\sqrt{2}\sqrt{3}+4\left(\sqrt{6}\right)^{2}}{2^{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{2-4\times 2\sqrt{3}+4\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{2-8\sqrt{3}+4\left(\sqrt{6}\right)^{2}}{2^{2}}
Multiply -4 and 2 to get -8.
\frac{2-8\sqrt{3}+4\times 6}{2^{2}}
The square of \sqrt{6} is 6.
\frac{2-8\sqrt{3}+24}{2^{2}}
Multiply 4 and 6 to get 24.
\frac{26-8\sqrt{3}}{2^{2}}
Add 2 and 24 to get 26.
\frac{26-8\sqrt{3}}{4}
Calculate 2 to the power of 2 and get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}