Solve for R
R=-2\sqrt{2}h+4h
Solve for h
h=\frac{\sqrt{2}R}{4}+\frac{R}{2}
Share
Copied to clipboard
2\left(\frac{\sqrt{2}}{2}+1\right)R=4h
Multiply both sides of the equation by 2.
\left(2\times \frac{\sqrt{2}}{2}+2\right)R=4h
Use the distributive property to multiply 2 by \frac{\sqrt{2}}{2}+1.
\left(\frac{2\sqrt{2}}{2}+2\right)R=4h
Express 2\times \frac{\sqrt{2}}{2} as a single fraction.
\left(\sqrt{2}+2\right)R=4h
Cancel out 2 and 2.
\frac{\left(\sqrt{2}+2\right)R}{\sqrt{2}+2}=\frac{4h}{\sqrt{2}+2}
Divide both sides by \sqrt{2}+2.
R=\frac{4h}{\sqrt{2}+2}
Dividing by \sqrt{2}+2 undoes the multiplication by \sqrt{2}+2.
R=-2\sqrt{2}h+4h
Divide 4h by \sqrt{2}+2.
2\left(\frac{\sqrt{2}}{2}+1\right)R=4h
Multiply both sides of the equation by 2.
\left(2\times \frac{\sqrt{2}}{2}+2\right)R=4h
Use the distributive property to multiply 2 by \frac{\sqrt{2}}{2}+1.
\left(\frac{2\sqrt{2}}{2}+2\right)R=4h
Express 2\times \frac{\sqrt{2}}{2} as a single fraction.
\left(\sqrt{2}+2\right)R=4h
Cancel out 2 and 2.
\sqrt{2}R+2R=4h
Use the distributive property to multiply \sqrt{2}+2 by R.
4h=\sqrt{2}R+2R
Swap sides so that all variable terms are on the left hand side.
\frac{4h}{4}=\frac{\sqrt{2}R+2R}{4}
Divide both sides by 4.
h=\frac{\sqrt{2}R+2R}{4}
Dividing by 4 undoes the multiplication by 4.
h=\frac{\sqrt{2}R}{4}+\frac{R}{2}
Divide R\sqrt{2}+2R by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}