Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{2}-18} by multiplying numerator and denominator by \sqrt{2}+18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Consider \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Square \sqrt{2}. Square 18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Subtract 324 from 2 to get -322.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
To raise \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Expand \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}.
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
The square of \sqrt{2} is 2.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+18\right)^{2}.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
The square of \sqrt{2} is 2.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Add 2 and 324 to get 326.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Calculate -322 to the power of 2 and get 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Divide 2\left(326+36\sqrt{2}\right) by 103684 to get \frac{1}{51842}\left(326+36\sqrt{2}\right).
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Use the distributive property to multiply \frac{1}{51842} by 326+36\sqrt{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{2}-18} by multiplying numerator and denominator by \sqrt{2}+18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Consider \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Square \sqrt{2}. Square 18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Subtract 324 from 2 to get -322.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
To raise \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Expand \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}.
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
The square of \sqrt{2} is 2.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+18\right)^{2}.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
The square of \sqrt{2} is 2.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Add 2 and 324 to get 326.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Calculate -322 to the power of 2 and get 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Divide 2\left(326+36\sqrt{2}\right) by 103684 to get \frac{1}{51842}\left(326+36\sqrt{2}\right).
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Use the distributive property to multiply \frac{1}{51842} by 326+36\sqrt{2}.