Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Share

\frac{2x}{2\times 5}\times \frac{7}{63}
Express \frac{\frac{2x}{2}}{5} as a single fraction.
\frac{x}{5}\times \frac{7}{63}
Cancel out 2 in both numerator and denominator.
\frac{x}{5}\times \frac{1}{9}
Reduce the fraction \frac{7}{63} to lowest terms by extracting and canceling out 7.
\frac{x}{5\times 9}
Multiply \frac{x}{5} times \frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{45}
Multiply 5 and 9 to get 45.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{2\times 5}\times \frac{7}{63})
Express \frac{\frac{2x}{2}}{5} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{5}\times \frac{7}{63})
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{5}\times \frac{1}{9})
Reduce the fraction \frac{7}{63} to lowest terms by extracting and canceling out 7.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{5\times 9})
Multiply \frac{x}{5} times \frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{45})
Multiply 5 and 9 to get 45.
\frac{1}{45}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{1}{45}x^{0}
Subtract 1 from 1.
\frac{1}{45}\times 1
For any term t except 0, t^{0}=1.
\frac{1}{45}
For any term t, t\times 1=t and 1t=t.