Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\eta n}{mn}-\frac{mm}{mn}\right)\times \frac{m}{n-m}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m and n is mn. Multiply \frac{\eta }{m} times \frac{n}{n}. Multiply \frac{m}{n} times \frac{m}{m}.
\frac{\eta n-mm}{mn}\times \frac{m}{n-m}
Since \frac{\eta n}{mn} and \frac{mm}{mn} have the same denominator, subtract them by subtracting their numerators.
\frac{\eta n-m^{2}}{mn}\times \frac{m}{n-m}
Do the multiplications in \eta n-mm.
\frac{\left(\eta n-m^{2}\right)m}{mn\left(n-m\right)}
Multiply \frac{\eta n-m^{2}}{mn} times \frac{m}{n-m} by multiplying numerator times numerator and denominator times denominator.
\frac{-m^{2}+n\eta }{n\left(-m+n\right)}
Cancel out m in both numerator and denominator.
\frac{-m^{2}+n\eta }{-nm+n^{2}}
Use the distributive property to multiply n by -m+n.
\left(\frac{\eta n}{mn}-\frac{mm}{mn}\right)\times \frac{m}{n-m}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m and n is mn. Multiply \frac{\eta }{m} times \frac{n}{n}. Multiply \frac{m}{n} times \frac{m}{m}.
\frac{\eta n-mm}{mn}\times \frac{m}{n-m}
Since \frac{\eta n}{mn} and \frac{mm}{mn} have the same denominator, subtract them by subtracting their numerators.
\frac{\eta n-m^{2}}{mn}\times \frac{m}{n-m}
Do the multiplications in \eta n-mm.
\frac{\left(\eta n-m^{2}\right)m}{mn\left(n-m\right)}
Multiply \frac{\eta n-m^{2}}{mn} times \frac{m}{n-m} by multiplying numerator times numerator and denominator times denominator.
\frac{-m^{2}+n\eta }{n\left(-m+n\right)}
Cancel out m in both numerator and denominator.
\frac{-m^{2}+n\eta }{-nm+n^{2}}
Use the distributive property to multiply n by -m+n.