( \cot ^ { - 1 } y + x ) d y = ( 1 + y ^ { 2 } ) d x
Solve for d (complex solution)
\left\{\begin{matrix}d=0\text{, }&y\neq 0\\d\in \mathrm{C}\text{, }&x=-\frac{y\arctan(\frac{1}{y})}{-y^{2}+y-1}\text{ and }y\neq \frac{-\sqrt{3}i+1}{2}\text{ and }y\neq \frac{1+\sqrt{3}i}{2}\text{ and }y\neq 0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{y\arctan(\frac{1}{y})}{-y^{2}+y-1}\text{, }&y\neq \frac{-\sqrt{3}i+1}{2}\text{ and }y\neq \frac{1+\sqrt{3}i}{2}\text{ and }y\neq 0\\x\in \mathrm{C}\text{, }&d=0\text{ and }y\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=0\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&x=-\frac{y\arctan(\frac{1}{y})}{-y^{2}+y-1}\text{ and }y\neq 0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{y\arctan(\frac{1}{y})}{-y^{2}+y-1}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&d=0\text{ and }y\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(\arccot(y)d+xd\right)y=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)+x by d.
\arccot(y)dy+xdy=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)d+xd by y.
\arccot(y)dy+xdy=\left(d+y^{2}d\right)x
Use the distributive property to multiply 1+y^{2} by d.
\arccot(y)dy+xdy=dx+y^{2}dx
Use the distributive property to multiply d+y^{2}d by x.
\arccot(y)dy+xdy-dx=y^{2}dx
Subtract dx from both sides.
\arccot(y)dy+xdy-dx-y^{2}dx=0
Subtract y^{2}dx from both sides.
dy\arccot(y)+dxy-dxy^{2}-dx=0
Reorder the terms.
\left(y\arccot(y)+xy-xy^{2}-x\right)d=0
Combine all terms containing d.
\left(y\arccot(y)-xy^{2}+xy-x\right)d=0
The equation is in standard form.
d=0
Divide 0 by y\arccot(y)+xy-xy^{2}-x.
\left(\arccot(y)d+xd\right)y=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)+x by d.
\arccot(y)dy+xdy=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)d+xd by y.
\arccot(y)dy+xdy=\left(d+y^{2}d\right)x
Use the distributive property to multiply 1+y^{2} by d.
\arccot(y)dy+xdy=dx+y^{2}dx
Use the distributive property to multiply d+y^{2}d by x.
\arccot(y)dy+xdy-dx=y^{2}dx
Subtract dx from both sides.
\arccot(y)dy+xdy-dx-y^{2}dx=0
Subtract y^{2}dx from both sides.
xdy-dx-y^{2}dx=-\arccot(y)dy
Subtract \arccot(y)dy from both sides. Anything subtracted from zero gives its negation.
\left(dy-d-y^{2}d\right)x=-\arccot(y)dy
Combine all terms containing x.
\left(-dy^{2}+dy-d\right)x=-dy\arccot(y)
The equation is in standard form.
\frac{\left(-dy^{2}+dy-d\right)x}{-dy^{2}+dy-d}=-\frac{dy\arctan(\frac{1}{y})}{-dy^{2}+dy-d}
Divide both sides by dy-d-y^{2}d.
x=-\frac{dy\arctan(\frac{1}{y})}{-dy^{2}+dy-d}
Dividing by dy-d-y^{2}d undoes the multiplication by dy-d-y^{2}d.
x=-\frac{y\arctan(\frac{1}{y})}{-y^{2}+y-1}
Divide -\arctan(\frac{1}{y})dy by dy-d-y^{2}d.
\left(\arccot(y)d+xd\right)y=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)+x by d.
\arccot(y)dy+xdy=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)d+xd by y.
\arccot(y)dy+xdy=\left(d+y^{2}d\right)x
Use the distributive property to multiply 1+y^{2} by d.
\arccot(y)dy+xdy=dx+y^{2}dx
Use the distributive property to multiply d+y^{2}d by x.
\arccot(y)dy+xdy-dx=y^{2}dx
Subtract dx from both sides.
\arccot(y)dy+xdy-dx-y^{2}dx=0
Subtract y^{2}dx from both sides.
dy\arccot(y)+dxy-dxy^{2}-dx=0
Reorder the terms.
\left(y\arccot(y)+xy-xy^{2}-x\right)d=0
Combine all terms containing d.
\left(y\arccot(y)-xy^{2}+xy-x\right)d=0
The equation is in standard form.
d=0
Divide 0 by y\arccot(y)+xy-xy^{2}-x.
\left(\arccot(y)d+xd\right)y=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)+x by d.
\arccot(y)dy+xdy=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)d+xd by y.
\arccot(y)dy+xdy=\left(d+y^{2}d\right)x
Use the distributive property to multiply 1+y^{2} by d.
\arccot(y)dy+xdy=dx+y^{2}dx
Use the distributive property to multiply d+y^{2}d by x.
\arccot(y)dy+xdy-dx=y^{2}dx
Subtract dx from both sides.
\arccot(y)dy+xdy-dx-y^{2}dx=0
Subtract y^{2}dx from both sides.
xdy-dx-y^{2}dx=-\arccot(y)dy
Subtract \arccot(y)dy from both sides. Anything subtracted from zero gives its negation.
\left(dy-d-y^{2}d\right)x=-\arccot(y)dy
Combine all terms containing x.
\left(-dy^{2}+dy-d\right)x=-dy\arccot(y)
The equation is in standard form.
\frac{\left(-dy^{2}+dy-d\right)x}{-dy^{2}+dy-d}=-\frac{dy\arctan(\frac{1}{y})}{-dy^{2}+dy-d}
Divide both sides by dy-d-y^{2}d.
x=-\frac{dy\arctan(\frac{1}{y})}{-dy^{2}+dy-d}
Dividing by dy-d-y^{2}d undoes the multiplication by dy-d-y^{2}d.
x=-\frac{y\arctan(\frac{1}{y})}{-y^{2}+y-1}
Divide -\arctan(\frac{1}{y})dy by dy-d-y^{2}d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}