Skip to main content
Solve for d (complex solution)
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for d
Tick mark Image
Solve for x
Tick mark Image
Graph

Share

\left(\arccot(y)d+xd\right)y=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)+x by d.
\arccot(y)dy+xdy=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)d+xd by y.
\arccot(y)dy+xdy=\left(d+y^{2}d\right)x
Use the distributive property to multiply 1+y^{2} by d.
\arccot(y)dy+xdy=dx+y^{2}dx
Use the distributive property to multiply d+y^{2}d by x.
\arccot(y)dy+xdy-dx=y^{2}dx
Subtract dx from both sides.
\arccot(y)dy+xdy-dx-y^{2}dx=0
Subtract y^{2}dx from both sides.
dy\arccot(y)+dxy-dxy^{2}-dx=0
Reorder the terms.
\left(y\arccot(y)+xy-xy^{2}-x\right)d=0
Combine all terms containing d.
\left(y\arccot(y)-xy^{2}+xy-x\right)d=0
The equation is in standard form.
d=0
Divide 0 by y\arccot(y)+xy-xy^{2}-x.
\left(\arccot(y)d+xd\right)y=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)+x by d.
\arccot(y)dy+xdy=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)d+xd by y.
\arccot(y)dy+xdy=\left(d+y^{2}d\right)x
Use the distributive property to multiply 1+y^{2} by d.
\arccot(y)dy+xdy=dx+y^{2}dx
Use the distributive property to multiply d+y^{2}d by x.
\arccot(y)dy+xdy-dx=y^{2}dx
Subtract dx from both sides.
\arccot(y)dy+xdy-dx-y^{2}dx=0
Subtract y^{2}dx from both sides.
xdy-dx-y^{2}dx=-\arccot(y)dy
Subtract \arccot(y)dy from both sides. Anything subtracted from zero gives its negation.
\left(dy-d-y^{2}d\right)x=-\arccot(y)dy
Combine all terms containing x.
\left(-dy^{2}+dy-d\right)x=-dy\arccot(y)
The equation is in standard form.
\frac{\left(-dy^{2}+dy-d\right)x}{-dy^{2}+dy-d}=-\frac{dy\arctan(\frac{1}{y})}{-dy^{2}+dy-d}
Divide both sides by dy-d-y^{2}d.
x=-\frac{dy\arctan(\frac{1}{y})}{-dy^{2}+dy-d}
Dividing by dy-d-y^{2}d undoes the multiplication by dy-d-y^{2}d.
x=-\frac{y\arctan(\frac{1}{y})}{-y^{2}+y-1}
Divide -\arctan(\frac{1}{y})dy by dy-d-y^{2}d.
\left(\arccot(y)d+xd\right)y=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)+x by d.
\arccot(y)dy+xdy=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)d+xd by y.
\arccot(y)dy+xdy=\left(d+y^{2}d\right)x
Use the distributive property to multiply 1+y^{2} by d.
\arccot(y)dy+xdy=dx+y^{2}dx
Use the distributive property to multiply d+y^{2}d by x.
\arccot(y)dy+xdy-dx=y^{2}dx
Subtract dx from both sides.
\arccot(y)dy+xdy-dx-y^{2}dx=0
Subtract y^{2}dx from both sides.
dy\arccot(y)+dxy-dxy^{2}-dx=0
Reorder the terms.
\left(y\arccot(y)+xy-xy^{2}-x\right)d=0
Combine all terms containing d.
\left(y\arccot(y)-xy^{2}+xy-x\right)d=0
The equation is in standard form.
d=0
Divide 0 by y\arccot(y)+xy-xy^{2}-x.
\left(\arccot(y)d+xd\right)y=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)+x by d.
\arccot(y)dy+xdy=\left(1+y^{2}\right)dx
Use the distributive property to multiply \arccot(y)d+xd by y.
\arccot(y)dy+xdy=\left(d+y^{2}d\right)x
Use the distributive property to multiply 1+y^{2} by d.
\arccot(y)dy+xdy=dx+y^{2}dx
Use the distributive property to multiply d+y^{2}d by x.
\arccot(y)dy+xdy-dx=y^{2}dx
Subtract dx from both sides.
\arccot(y)dy+xdy-dx-y^{2}dx=0
Subtract y^{2}dx from both sides.
xdy-dx-y^{2}dx=-\arccot(y)dy
Subtract \arccot(y)dy from both sides. Anything subtracted from zero gives its negation.
\left(dy-d-y^{2}d\right)x=-\arccot(y)dy
Combine all terms containing x.
\left(-dy^{2}+dy-d\right)x=-dy\arccot(y)
The equation is in standard form.
\frac{\left(-dy^{2}+dy-d\right)x}{-dy^{2}+dy-d}=-\frac{dy\arctan(\frac{1}{y})}{-dy^{2}+dy-d}
Divide both sides by dy-d-y^{2}d.
x=-\frac{dy\arctan(\frac{1}{y})}{-dy^{2}+dy-d}
Dividing by dy-d-y^{2}d undoes the multiplication by dy-d-y^{2}d.
x=-\frac{y\arctan(\frac{1}{y})}{-y^{2}+y-1}
Divide -\arctan(\frac{1}{y})dy by dy-d-y^{2}d.