Solve for v (complex solution)
v\in \mathrm{C}
Solve for α (complex solution)
\alpha \in \mathrm{C}
Solve for v
\left\{\begin{matrix}v\in \mathrm{R}\text{, }&\alpha >0\text{ or }\left(\alpha <0\text{ and }Denominator(v)\text{bmod}2=1\right)\\v>0\text{, }&\alpha =0\end{matrix}\right.
Solve for α
\left\{\begin{matrix}\\\alpha >0\text{, }&\text{unconditionally}\\\alpha <0\text{, }&Denominator(v)\text{bmod}2=1\\\alpha =0\text{, }&v>0\end{matrix}\right.
Share
Copied to clipboard
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}-3\right)^{2}-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{v}+2\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9\right)-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\alpha ^{v}-3\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}\right)^{2}+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
To find the opposite of \left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9, find the opposite of each term.
4\alpha ^{v}+4+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
Combine \left(\alpha ^{v}\right)^{2} and -\left(\alpha ^{v}\right)^{2} to get 0.
10\alpha ^{v}+4-9-10\left(\alpha ^{v}-1\right)=5
Combine 4\alpha ^{v} and 6\alpha ^{v} to get 10\alpha ^{v}.
10\alpha ^{v}-5-10\left(\alpha ^{v}-1\right)=5
Subtract 9 from 4 to get -5.
10\alpha ^{v}-5-10\alpha ^{v}+10=5
Use the distributive property to multiply -10 by \alpha ^{v}-1.
-5+10=5
Combine 10\alpha ^{v} and -10\alpha ^{v} to get 0.
5=5
Add -5 and 10 to get 5.
\text{true}
Compare 5 and 5.
v\in \mathrm{C}
This is true for any v.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}-3\right)^{2}-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{v}+2\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9\right)-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\alpha ^{v}-3\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}\right)^{2}+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
To find the opposite of \left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9, find the opposite of each term.
4\alpha ^{v}+4+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
Combine \left(\alpha ^{v}\right)^{2} and -\left(\alpha ^{v}\right)^{2} to get 0.
10\alpha ^{v}+4-9-10\left(\alpha ^{v}-1\right)=5
Combine 4\alpha ^{v} and 6\alpha ^{v} to get 10\alpha ^{v}.
10\alpha ^{v}-5-10\left(\alpha ^{v}-1\right)=5
Subtract 9 from 4 to get -5.
10\alpha ^{v}-5-10\alpha ^{v}+10=5
Use the distributive property to multiply -10 by \alpha ^{v}-1.
-5+10=5
Combine 10\alpha ^{v} and -10\alpha ^{v} to get 0.
5=5
Add -5 and 10 to get 5.
\text{true}
Compare 5 and 5.
\alpha \in \mathrm{C}
This is true for any \alpha .
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}-3\right)^{2}-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{v}+2\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9\right)-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\alpha ^{v}-3\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}\right)^{2}+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
To find the opposite of \left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9, find the opposite of each term.
4\alpha ^{v}+4+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
Combine \left(\alpha ^{v}\right)^{2} and -\left(\alpha ^{v}\right)^{2} to get 0.
10\alpha ^{v}+4-9-10\left(\alpha ^{v}-1\right)=5
Combine 4\alpha ^{v} and 6\alpha ^{v} to get 10\alpha ^{v}.
10\alpha ^{v}-5-10\left(\alpha ^{v}-1\right)=5
Subtract 9 from 4 to get -5.
10\alpha ^{v}-5-10\alpha ^{v}+10=5
Use the distributive property to multiply -10 by \alpha ^{v}-1.
-5+10=5
Combine 10\alpha ^{v} and -10\alpha ^{v} to get 0.
5=5
Add -5 and 10 to get 5.
\text{true}
Compare 5 and 5.
v\in \mathrm{R}
This is true for any v.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}-3\right)^{2}-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{v}+2\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9\right)-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\alpha ^{v}-3\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}\right)^{2}+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
To find the opposite of \left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9, find the opposite of each term.
4\alpha ^{v}+4+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
Combine \left(\alpha ^{v}\right)^{2} and -\left(\alpha ^{v}\right)^{2} to get 0.
10\alpha ^{v}+4-9-10\left(\alpha ^{v}-1\right)=5
Combine 4\alpha ^{v} and 6\alpha ^{v} to get 10\alpha ^{v}.
10\alpha ^{v}-5-10\left(\alpha ^{v}-1\right)=5
Subtract 9 from 4 to get -5.
10\alpha ^{v}-5-10\alpha ^{v}+10=5
Use the distributive property to multiply -10 by \alpha ^{v}-1.
-5+10=5
Combine 10\alpha ^{v} and -10\alpha ^{v} to get 0.
5=5
Add -5 and 10 to get 5.
\text{true}
Compare 5 and 5.
\alpha \in \mathrm{R}
This is true for any \alpha .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}