Skip to main content
Solve for v (complex solution)
Tick mark Image
Solve for α (complex solution)
Tick mark Image
Solve for v
Tick mark Image
Solve for α
Tick mark Image

Similar Problems from Web Search

Share

\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}-3\right)^{2}-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{v}+2\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9\right)-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\alpha ^{v}-3\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}\right)^{2}+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
To find the opposite of \left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9, find the opposite of each term.
4\alpha ^{v}+4+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
Combine \left(\alpha ^{v}\right)^{2} and -\left(\alpha ^{v}\right)^{2} to get 0.
10\alpha ^{v}+4-9-10\left(\alpha ^{v}-1\right)=5
Combine 4\alpha ^{v} and 6\alpha ^{v} to get 10\alpha ^{v}.
10\alpha ^{v}-5-10\left(\alpha ^{v}-1\right)=5
Subtract 9 from 4 to get -5.
10\alpha ^{v}-5-10\alpha ^{v}+10=5
Use the distributive property to multiply -10 by \alpha ^{v}-1.
-5+10=5
Combine 10\alpha ^{v} and -10\alpha ^{v} to get 0.
5=5
Add -5 and 10 to get 5.
\text{true}
Compare 5 and 5.
v\in \mathrm{C}
This is true for any v.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}-3\right)^{2}-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{v}+2\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9\right)-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\alpha ^{v}-3\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}\right)^{2}+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
To find the opposite of \left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9, find the opposite of each term.
4\alpha ^{v}+4+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
Combine \left(\alpha ^{v}\right)^{2} and -\left(\alpha ^{v}\right)^{2} to get 0.
10\alpha ^{v}+4-9-10\left(\alpha ^{v}-1\right)=5
Combine 4\alpha ^{v} and 6\alpha ^{v} to get 10\alpha ^{v}.
10\alpha ^{v}-5-10\left(\alpha ^{v}-1\right)=5
Subtract 9 from 4 to get -5.
10\alpha ^{v}-5-10\alpha ^{v}+10=5
Use the distributive property to multiply -10 by \alpha ^{v}-1.
-5+10=5
Combine 10\alpha ^{v} and -10\alpha ^{v} to get 0.
5=5
Add -5 and 10 to get 5.
\text{true}
Compare 5 and 5.
\alpha \in \mathrm{C}
This is true for any \alpha .
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}-3\right)^{2}-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{v}+2\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9\right)-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\alpha ^{v}-3\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}\right)^{2}+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
To find the opposite of \left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9, find the opposite of each term.
4\alpha ^{v}+4+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
Combine \left(\alpha ^{v}\right)^{2} and -\left(\alpha ^{v}\right)^{2} to get 0.
10\alpha ^{v}+4-9-10\left(\alpha ^{v}-1\right)=5
Combine 4\alpha ^{v} and 6\alpha ^{v} to get 10\alpha ^{v}.
10\alpha ^{v}-5-10\left(\alpha ^{v}-1\right)=5
Subtract 9 from 4 to get -5.
10\alpha ^{v}-5-10\alpha ^{v}+10=5
Use the distributive property to multiply -10 by \alpha ^{v}-1.
-5+10=5
Combine 10\alpha ^{v} and -10\alpha ^{v} to get 0.
5=5
Add -5 and 10 to get 5.
\text{true}
Compare 5 and 5.
v\in \mathrm{R}
This is true for any v.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}-3\right)^{2}-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{v}+2\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9\right)-10\left(\alpha ^{v}-1\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\alpha ^{v}-3\right)^{2}.
\left(\alpha ^{v}\right)^{2}+4\alpha ^{v}+4-\left(\alpha ^{v}\right)^{2}+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
To find the opposite of \left(\alpha ^{v}\right)^{2}-6\alpha ^{v}+9, find the opposite of each term.
4\alpha ^{v}+4+6\alpha ^{v}-9-10\left(\alpha ^{v}-1\right)=5
Combine \left(\alpha ^{v}\right)^{2} and -\left(\alpha ^{v}\right)^{2} to get 0.
10\alpha ^{v}+4-9-10\left(\alpha ^{v}-1\right)=5
Combine 4\alpha ^{v} and 6\alpha ^{v} to get 10\alpha ^{v}.
10\alpha ^{v}-5-10\left(\alpha ^{v}-1\right)=5
Subtract 9 from 4 to get -5.
10\alpha ^{v}-5-10\alpha ^{v}+10=5
Use the distributive property to multiply -10 by \alpha ^{v}-1.
-5+10=5
Combine 10\alpha ^{v} and -10\alpha ^{v} to get 0.
5=5
Add -5 and 10 to get 5.
\text{true}
Compare 5 and 5.
\alpha \in \mathrm{R}
This is true for any \alpha .