Evaluate
\frac{2}{15}\approx 0.133333333
Factor
\frac{2}{3 \cdot 5} = 0.13333333333333333
Share
Copied to clipboard
\frac{\frac{1}{2}\times 2-\frac{1}{3}}{3+\frac{\frac{2}{3}}{\frac{1}{3}}}
Divide 4 by 2 to get 2.
\frac{1-\frac{1}{3}}{3+\frac{\frac{2}{3}}{\frac{1}{3}}}
Cancel out 2 and 2.
\frac{\frac{3}{3}-\frac{1}{3}}{3+\frac{\frac{2}{3}}{\frac{1}{3}}}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{3-1}{3}}{3+\frac{\frac{2}{3}}{\frac{1}{3}}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2}{3}}{3+\frac{\frac{2}{3}}{\frac{1}{3}}}
Subtract 1 from 3 to get 2.
\frac{\frac{2}{3}}{3+\frac{2}{3}\times 3}
Divide \frac{2}{3} by \frac{1}{3} by multiplying \frac{2}{3} by the reciprocal of \frac{1}{3}.
\frac{\frac{2}{3}}{3+2}
Cancel out 3 and 3.
\frac{\frac{2}{3}}{5}
Add 3 and 2 to get 5.
\frac{2}{3\times 5}
Express \frac{\frac{2}{3}}{5} as a single fraction.
\frac{2}{15}
Multiply 3 and 5 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}