Solve for x
x = -\frac{17}{12} = -1\frac{5}{12} \approx -1.416666667
Graph
Share
Copied to clipboard
\frac{4}{-0.6}=4x-1
Divide both sides by -0.6.
\frac{40}{-6}=4x-1
Expand \frac{4}{-0.6} by multiplying both numerator and the denominator by 10.
-\frac{20}{3}=4x-1
Reduce the fraction \frac{40}{-6} to lowest terms by extracting and canceling out 2.
4x-1=-\frac{20}{3}
Swap sides so that all variable terms are on the left hand side.
4x=-\frac{20}{3}+1
Add 1 to both sides.
4x=-\frac{20}{3}+\frac{3}{3}
Convert 1 to fraction \frac{3}{3}.
4x=\frac{-20+3}{3}
Since -\frac{20}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
4x=-\frac{17}{3}
Add -20 and 3 to get -17.
x=\frac{-\frac{17}{3}}{4}
Divide both sides by 4.
x=\frac{-17}{3\times 4}
Express \frac{-\frac{17}{3}}{4} as a single fraction.
x=\frac{-17}{12}
Multiply 3 and 4 to get 12.
x=-\frac{17}{12}
Fraction \frac{-17}{12} can be rewritten as -\frac{17}{12} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}