Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{18}{15}-\frac{20}{15}-\left(-\frac{5}{2}+\frac{7}{3}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Least common multiple of 5 and 3 is 15. Convert \frac{6}{5} and \frac{4}{3} to fractions with denominator 15.
\frac{18-20}{15}-\left(-\frac{5}{2}+\frac{7}{3}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Since \frac{18}{15} and \frac{20}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{15}-\left(-\frac{5}{2}+\frac{7}{3}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Subtract 20 from 18 to get -2.
-\frac{2}{15}-\left(-\frac{15}{6}+\frac{14}{6}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Least common multiple of 2 and 3 is 6. Convert -\frac{5}{2} and \frac{7}{3} to fractions with denominator 6.
-\frac{2}{15}-\left(\frac{-15+14}{6}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Since -\frac{15}{6} and \frac{14}{6} have the same denominator, add them by adding their numerators.
-\frac{2}{15}-\left(-\frac{1}{6}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Add -15 and 14 to get -1.
-\frac{2}{15}-\frac{-1-1}{6}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Since -\frac{1}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{15}-\frac{-2}{6}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Subtract 1 from -1 to get -2.
-\frac{2}{15}-\left(-\frac{1}{3}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
-\frac{2}{15}+\frac{1}{3}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
The opposite of -\frac{1}{3} is \frac{1}{3}.
-\frac{2}{15}+\frac{5}{15}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Least common multiple of 15 and 3 is 15. Convert -\frac{2}{15} and \frac{1}{3} to fractions with denominator 15.
\frac{-2+5}{15}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Since -\frac{2}{15} and \frac{5}{15} have the same denominator, add them by adding their numerators.
\frac{3}{15}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Add -2 and 5 to get 3.
\frac{1}{5}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Reduce the fraction \frac{3}{15} to lowest terms by extracting and canceling out 3.
\frac{1-4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Since \frac{1}{5} and \frac{4}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Subtract 4 from 1 to get -3.
-\frac{12}{20}+\frac{15}{20}-\left(-\frac{7}{20}\right)
Least common multiple of 5 and 4 is 20. Convert -\frac{3}{5} and \frac{3}{4} to fractions with denominator 20.
\frac{-12+15}{20}-\left(-\frac{7}{20}\right)
Since -\frac{12}{20} and \frac{15}{20} have the same denominator, add them by adding their numerators.
\frac{3}{20}-\left(-\frac{7}{20}\right)
Add -12 and 15 to get 3.
\frac{3}{20}+\frac{7}{20}
The opposite of -\frac{7}{20} is \frac{7}{20}.
\frac{3+7}{20}
Since \frac{3}{20} and \frac{7}{20} have the same denominator, add them by adding their numerators.
\frac{10}{20}
Add 3 and 7 to get 10.
\frac{1}{2}
Reduce the fraction \frac{10}{20} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}