Evaluate
3
Factor
3
Share
Copied to clipboard
\frac{3}{2}+\frac{3}{4}-\frac{1}{2}-\left(-\frac{5}{4}\right)
The opposite of -\frac{3}{4} is \frac{3}{4}.
\frac{6}{4}+\frac{3}{4}-\frac{1}{2}-\left(-\frac{5}{4}\right)
Least common multiple of 2 and 4 is 4. Convert \frac{3}{2} and \frac{3}{4} to fractions with denominator 4.
\frac{6+3}{4}-\frac{1}{2}-\left(-\frac{5}{4}\right)
Since \frac{6}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{9}{4}-\frac{1}{2}-\left(-\frac{5}{4}\right)
Add 6 and 3 to get 9.
\frac{9}{4}-\frac{2}{4}-\left(-\frac{5}{4}\right)
Least common multiple of 4 and 2 is 4. Convert \frac{9}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{9-2}{4}-\left(-\frac{5}{4}\right)
Since \frac{9}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{4}-\left(-\frac{5}{4}\right)
Subtract 2 from 9 to get 7.
\frac{7}{4}+\frac{5}{4}
The opposite of -\frac{5}{4} is \frac{5}{4}.
\frac{7+5}{4}
Since \frac{7}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
\frac{12}{4}
Add 7 and 5 to get 12.
3
Divide 12 by 4 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}