Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{25}{9}\right)^{1}x^{4}y^{4}}{\left(\frac{8}{125}\right)^{1}x^{4}y^{2}}
Use the rules of exponents to simplify the expression.
\frac{\left(\frac{25}{9}\right)^{1}}{\left(\frac{8}{125}\right)^{1}}x^{4-4}y^{4-2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(\frac{25}{9}\right)^{1}}{\left(\frac{8}{125}\right)^{1}}x^{0}y^{4-2}
Subtract 4 from 4.
\frac{\left(\frac{25}{9}\right)^{1}}{\left(\frac{8}{125}\right)^{1}}y^{4-2}
For any number a except 0, a^{0}=1.
\frac{\left(\frac{25}{9}\right)^{1}}{\left(\frac{8}{125}\right)^{1}}y^{2}
Subtract 2 from 4.
\frac{3125}{72}y^{2}
Divide \frac{25}{9} by \frac{8}{125} by multiplying \frac{25}{9} by the reciprocal of \frac{8}{125}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{25}{9}y^{2}}{\frac{8}{125}})
Cancel out y^{2}x^{4} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{25}{9}y^{2}\times 125}{8})
Divide \frac{25}{9}y^{2} by \frac{8}{125} by multiplying \frac{25}{9}y^{2} by the reciprocal of \frac{8}{125}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{3125}{9}y^{2}}{8})
Multiply \frac{25}{9} and 125 to get \frac{3125}{9}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3125}{72}y^{2})
Divide \frac{3125}{9}y^{2} by 8 to get \frac{3125}{72}y^{2}.
2\times \frac{3125}{72}y^{2-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{3125}{36}y^{2-1}
Multiply 2 times \frac{3125}{72}.
\frac{3125}{36}y^{1}
Subtract 1 from 2.
\frac{3125}{36}y
For any term t, t^{1}=t.