( + \frac { 2 } { 3 } ) + [ \frac { - 1 } { 5 } ) \cdot ( - \frac { 1 } { 2 } ) + ( - \frac { 1 } { 6 }
Evaluate
\frac{3}{5}=0.6
Factor
\frac{3}{5} = 0.6
Share
Copied to clipboard
\frac{2}{3}-\frac{1}{5}\left(-\frac{1}{2}\right)-\frac{1}{6}
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
\frac{2}{3}+\frac{-\left(-1\right)}{5\times 2}-\frac{1}{6}
Multiply -\frac{1}{5} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}+\frac{1}{10}-\frac{1}{6}
Do the multiplications in the fraction \frac{-\left(-1\right)}{5\times 2}.
\frac{20}{30}+\frac{3}{30}-\frac{1}{6}
Least common multiple of 3 and 10 is 30. Convert \frac{2}{3} and \frac{1}{10} to fractions with denominator 30.
\frac{20+3}{30}-\frac{1}{6}
Since \frac{20}{30} and \frac{3}{30} have the same denominator, add them by adding their numerators.
\frac{23}{30}-\frac{1}{6}
Add 20 and 3 to get 23.
\frac{23}{30}-\frac{5}{30}
Least common multiple of 30 and 6 is 30. Convert \frac{23}{30} and \frac{1}{6} to fractions with denominator 30.
\frac{23-5}{30}
Since \frac{23}{30} and \frac{5}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{18}{30}
Subtract 5 from 23 to get 18.
\frac{3}{5}
Reduce the fraction \frac{18}{30} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}