Solve for x
x=-19
x=5
Graph
Share
Copied to clipboard
|x+\frac{7^{12}\times 7}{49^{6}}|=\frac{12^{7}\times 12^{8}}{144^{7}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
|x+\frac{7^{13}}{49^{6}}|=\frac{12^{7}\times 12^{8}}{144^{7}}
To multiply powers of the same base, add their exponents. Add 12 and 1 to get 13.
|x+\frac{7^{13}}{49^{6}}|=\frac{12^{15}}{144^{7}}
To multiply powers of the same base, add their exponents. Add 7 and 8 to get 15.
|x+\frac{96889010407}{49^{6}}|=\frac{12^{15}}{144^{7}}
Calculate 7 to the power of 13 and get 96889010407.
|x+\frac{96889010407}{13841287201}|=\frac{12^{15}}{144^{7}}
Calculate 49 to the power of 6 and get 13841287201.
|x+7|=\frac{12^{15}}{144^{7}}
Divide 96889010407 by 13841287201 to get 7.
|x+7|=\frac{15407021574586368}{144^{7}}
Calculate 12 to the power of 15 and get 15407021574586368.
|x+7|=\frac{15407021574586368}{1283918464548864}
Calculate 144 to the power of 7 and get 1283918464548864.
|x+7|=12
Divide 15407021574586368 by 1283918464548864 to get 12.
x+7=12 x+7=-12
Use the definition of absolute value.
x=5 x=-19
Subtract 7 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}